No Arabic abstract
For a classical group $G$ over a field $F$ together with a finite-order automorphism $theta$ that acts compatibly on $F$, we describe the fixed point subgroup of $theta$ on $G$ and the eigenspaces of $theta$ on the Lie algebra $mathfrak{g}$ in terms of cyclic quivers with involution. More precise classification is given when $mathfrak{g}$ is a loop Lie algebra, i.e., when $F=mathbb{C}((t))$.
This article establishes some elementary dualities for root systems with automorphisms. We give several applications to reductive groups over nonarchimedean local fields: (1) the proof of a conjecture of Pappas-Rapoport-Smithling characterizing the extremal elements of the ${ mu }$-admissible sets attached to general non-split groups; (2) for quasi-split groups, a simple uniform description of the Bruhat-Tits {e}chelonnage root system $Sigma_0$, the Knop root system $widetilde{Sigma}_0$, and the Macdonald root system $Sigma_1$, in terms of Galois actions on the absolute roots $Phi$; and (3) for quasi-split groups, the construction of the geometric basis of the center of a parahoric Hecke algebra, and the expression of certain important elements of the stable Bernstein center in terms of this basis.
Let G be a complex reductive group acting on a finite-dimensional complex vector space H. Let B be a Borel subgroup of G and let T be the associated torus. The Mumford cone is the polyhedral cone generated by the T-weights of the polynomial functions on H which are semi-invariant under the Borel subgroup. In this article, we determine the inequalities of the Mumford cone in the case of the linear representation associated to a quiver and a dimension vector n=(n_x). We give these inequalities in terms of filtered dimension vectors, and we directly adapt Schofields argument to inductively determine the dimension vectors of general subrepresentations in the filtered context. In particular, this gives one further proof of the Horn inequalities for tensor products.
This is a survey article for Handbook of Linear Algebra, 2nd ed., Chapman & Hall/CRC, 2014. An informal introduction to representations of quivers and finite dimensional algebras from a linear algebraists point of view is given. The notion of quiver representations is extended to representations of mixed graphs, which permits one to study systems of linear mappings and bilinear or sesquilinear forms. The problem of classifying such systems is reduced to the problem of classifying systems of linear mappings.
In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the punctures. We proved several results which support this conjecture. Here we announce new results which are consequences of those of arXiv:0810.2076.
We give some applications of a Hopf algebra constructed from a group acting on another Hopf algebra A as Hopf automorphisms, namely Molnars smash coproduct Hopf algebra. We find connections between the exponent and Frobenius-Schur indicators of a smash coproduct and the twisted exponents and twisted Frobenius-Schur indicators of the original Hopf algebra A. We study the category of modules of the smash coproduct.