In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the punctures. We proved several results which support this conjecture. Here we announce new results which are consequences of those of arXiv:0810.2076.
In this paper we give a simple description of DT-invariants of double quivers without potential as the multiplicity of the Steinberg character in some representation associated with the quiver. When the dimension vector is indivisible we use this description to express these DT-invariants as the Poincare polynomial of some singular quiver varieties. Finally we explain the connections with previous work of Hausel-Letellier-Villegas where DT-invariants are expressed as the graded multiplicities of the trivial representation of some Weyl group in the cohomology of some non-singular quiver varieties attached to an extended quiver.
In this paper we prove that the counting polynomials of certain torus orbits in products of partial flag varieties coincides with the Kac polynomials of supernova quivers, which arise in the study of the moduli spaces of certain irregular meromorphic connections on trivial bundles over the projective line. We also prove that these polynomials can be expressed as a specialization of Tutte polynomials of certain graphs providing a combinatorial proof of the non-negativity of their coefficients.
In this paper we investigate locally free representations of a quiver Q over a commutative Frobenius algebra R by arithmetic Fourier transform. When the base field is finite we prove that the number of isomorphism classes of absolutely indecomposable locally free representations of fixed rank is independent of the orientation of Q. We also prove that the number of isomorphism classes of locally free absolutely indecomposable representations of the preprojective algebra of Q over R equals the number of isomorphism classes of locally free absolutely indecomposable representations of Q over R[t]/(t^2). Using these results together with results of Geiss, Leclerc and Schroer we give, when k is algebraically closed, a classification of pairs (Q,R) such that the set of isomorphism classes of indecomposable locally free representations of Q over R is finite. Finally, when the representation is free of rank 1 at each vertex of Q, we study the function that counts the number of isomorphism classes of absolutely indecomposable locally free representations of Q over the Frobenius algebra F_q[t]/(t^r). We prove that they are polynomial in q and their generating function is rational and satisfies a functional equation.
In this paper we are interested in two kinds of (stacky) character varieties associated to a compact non-orientable surface. (A) We consider the quotient stack of the space of representations of the fundamental group of this surface to GL(n). (B) We choose a set of k-punctures on the surface and a generic k-tuple of semisimple conjugacy classes of GL(n), and we consider the stack of anti-invariant local systems on the orientation cover of the surface with local monodromies around the punctures given by the prescribed conjugacy classes. We compute the number of points of these spaces over finite fields from which we get a formula for their E-series (a certain specialization of the mixed Poincare series). In case (B) we give a conjectural formula for the full mixed Poincare series.
We present a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the character varieties of representations of the fundamental group of a Riemann surface of genus g to GL_n(C) with fixed generic semi-simple conjugacy classes at k punctures. Using the character table of GL_n(F_q) we calculate the E-polynomial of these character varieties and confirm that it is as predicted by our main conjecture. Then, using the character table of gl_n(F_q), we calculate the E-polynomial of certain associated comet-shaped quiver varieties, the additive analogues of our character variety, and find that it is the pure part of our conjectured mixed Hodge polynomial. Finally, we observe that the pure part of our conjectured mixed Hodge polynomial also equals certain multiplicities in the tensor product of irreducible representations of GL_n(F_q). This implies a curious connection between the representation theory of GL_n(F_q) and Kac-Moody algebras associated with comet-shaped, typically wild, quivers.