No Arabic abstract
We discuss a system of strengthenings of $aleph_omega$ is Jonsson indexed by real numbers, and identify a strongest one. We give a proof of a theorem of Silver and show that there is a barrier to weakening its hypothesis.
Let 0<n^*< omega and f:X-> n^*+1 be a function where X subseteq omega backslash (n^*+1) is infinite. Consider the following set S_f= {x subset aleph_omega : |x| <= aleph_{n^*} & (for all n in X)cf(x cap alpha_n)= aleph_{f(n)}}. The question, first posed by Baumgartner, is whether S_f is stationary in [alpha_omega]^{< aleph_{n^*+1}}. By a standard result, the above question can also be rephrased as certain transfer property. Namely, S_f is stationary iff for any structure A=< aleph_omega, ... > theres a B prec A such that |B|= aleph_{n^*} and for all n in X we have cf(B cap aleph_n)= aleph_{f(n)}. In this paper, we are going to prove a few results concerning the above question.
In [FHK13], the authors considered the question whether model-existence of $L_{omega_1,omega}$-sentences is absolute for transitive models of ZFC, in the sense that if $V subseteq W$ are transitive models of ZFC with the same ordinals, $varphiin V$ and $Vmodels varphi text{ is an } L_{omega_1,omega}text{-sentence}$, then $V models varphi text{ has a model of size } aleph_alpha$ if and only if $W models varphi text{ has a model of size } aleph_alpha$. From [FHK13] we know that the answer is positive for $alpha=0,1$ and under the negation of CH, the answer is negative for all $alpha>1$. Under GCH, and assuming the consistency of a supercompact cardinal, the answer remains negative for each $alpha>1$, except the case when $alpha=omega$ which is an open question in [FHK13]. We answer the open question by providing a negative answer under GCH even for $alpha=omega$. Our examples are incomplete sentences. In fact, the same sentences can be used to prove a negative answer under GCH for all $alpha>1$ assuming the consistency of a Mahlo cardinal. Thus, the large cardinal assumption is relaxed from a supercompact in [FHK13] to a Mahlo cardinal. Finally, we consider the absoluteness question for the $aleph_alpha$-amalgamation property of $L_{omega_1,omega}$-sentences (under substructure). We prove that assuming GCH, $aleph_alpha$-amalgamation is non-absolute for $1<alpha<omega$. This answers a question from [SS]. The cases $alpha=1$ and $alpha$ infinite remain open. As a corollary we get that it is non-absolute that the amalgamation spectrum of an $L_{omega_1,omega}$-sentence is empty.
The synthesis problem for partially observable Markov decision processes (POMDPs) is to compute a policy that satisfies a given specification. Such policies have to take the full execution history of a POMDP into account, rendering the problem undecidable in general. A common approach is to use a limited amount of memory and randomize over potential choices. Yet, this problem is still NP-hard and often computationally intractable in practice. A restricted problem is to use neither history nor randomization, yielding policies that are called stationary and deterministic. Previous approaches to compute such policies employ mixed-integer linear programming (MILP). We provide a novel MILP encoding that supports sophisticated specifications in the form of temporal logic constraints. It is able to handle an arbitrary number of such specifications. Yet, randomization and memory are often mandatory to achieve satisfactory policies. First, we extend our encoding to deliver a restricted class of randomized policies. Second, based on the results of the original MILP, we employ a preprocessing of the POMDP to encompass memory-based decisions. The advantages of our approach over state-of-the-art POMDP solvers lie (1) in the flexibility to strengthen simple deterministic policies without losing computational tractability and (2) in the ability to enforce the provable satisfaction of arbitrarily many specifications. The latter point allows taking trade-offs between performance and safety aspects of typical POMDP examples into account. We show the effectiveness of our method on a broad range of benchmarks.
Assuming that $0^#$ exists, we prove that there is a structure that can effectively interpret its own jump. In particular, we get a structure $mathcal A$ such that [ Sp({mathcal A}) = {{bf x}:{bf x}in Sp ({mathcal A})}, ] where $Sp ({mathcal A})$ is the set of Turing degrees which compute a copy of $mathcal A$. It turns out that, more interesting than the result itself, is its unexpected complexity. We prove that higher-order arithmetic, which is the union of full $n$th-order arithmetic for all $n$, cannot prove the existence of such a structure.
We propose a system for the interpretation of anaphoric relationships between unbound pronouns and quantifiers. The main technical contribution of our proposal consists in combining generalized quantifiers with dependent types. Empirically, our system allows a uniform treatment of all types of unbound anaphora, including the notoriously difficult cases such as quantificational subordination, cumulative and branching continuations, and donkey anaphora.