Do you want to publish a course? Click here

Panchromatic SED fitting codes and modelling techniques

57   0   0.0 ( 0 )
 Added by Maarten Baes
 Publication date 2019
  fields Physics
and research's language is English
 Authors Maarten Baes




Ask ChatGPT about the research

Modelling and interpreting the SEDs of galaxies has become one of the key tools at the disposal of extragalactic astronomers. Ideally, we could hope that, through a detailed study of its SED, we can infer the correct physical properties and the evolutionary history of a galaxy. In the past decade, panchromatic SED fitting, i.e. modelling the SED over the entire UV-submm wavelength regime, has seen an enormous advance. Several advanced new codes have been developed, nearly all based on Bayesian inference modelling. In this review, we briefly touch upon the different ingredients necessary for panchromatic SED modelling, and discuss the methodology and some important aspects of Bayesian SED modelling. The current uncertainties and limitations of panchromatic SED modelling are discussed, and we explore some avenues how the models and techniques can potentially be improved in the near future.

rate research

Read More

123 - Buat , V. , Ciesla 2019
Over the past few years ALMA has detected dust-rich galaxies whose cold dust emission is spatially disconnected from the UV rest-frame emission. This represents a challenge for modeling their spectral energy distributions with codes based on an energy budget between the stellar and dust components. We want to verify the validity of energy balance modeling on a sample of galaxies observed from the UV to the sub-millimeter rest frame with ALMA and decipher what information can be reliably retrieved from the analysis of the full SED and from subsets of wavelengths. We select 17 sources at z~2 in the Hubble Ultra-Deep Field and in the GOODS- South field detected with ALMA and Herschel and for which UV to NIR. rest-frame ancillary data are available. We fit the data with CIGALE exploring different configurations for dust attenuation and star formation histories, considering either the full dataset or one that is reduced to the stellar and dust emission. We compare estimates of the dust luminosities, star formation rates, and stellar masses. The fit of the stellar continuum alone with the starburst attenuation law can only reproduce up to 50% of the total dust luminosity observed by Herschel and ALMA. This deficit is found to be consistent with similar quantities estimated in the COSMOS field and is found to increase with the specific star formation rate. The combined stellar and dust SEDs are well fitted when different attenuation laws are introduced. Shallow attenuation curves are needed for the galaxies whose cold dust distribution is very compact compared to starlight. The stellar mass estimates are affected by the choice of the attenuation law. The star formation rates are robustly estimated as long as dust luminosities are available. The large majority of the galaxies are above the average main sequence of star forming galaxies and one source is a strong starburst.
We revised the treatment of interstellar dust in the KOSMA-tau PDR model code to achieve a consistent description of the dust-related physics in the code. The detailed knowledge of the dust properties is then used to compute the dust continuum emission together with the line emission of chemical species. We coupled the KOSMA-tau PDR code with the MCDRT (multi component dust radiative transfer) code to solve the frequency-dependent radiative transfer equations and the thermal balance equation in a dusty clump under the assumption of spherical symmetry, assuming thermal equilibrium in calculating the dust temperatures, neglecting non-equilibrium effects. We updated the calculation of the photoelectric heating and extended the parametrization range for the photoelectric heating toward high densities and UV fields. We revised the computation of the H2 formation on grain surfaces to include the Eley-Rideal effect, thus allowing for high-temperature H2 formation. We demonstrate how the different optical properties, temperatures, and heating and cooling capabilities of the grains influence the physical and chemical structure of a model cloud. The most influential modification is the treatment of H2 formation on grain surfaces that allows for chemisorption. This increases the total H2 formation significantly and the connected H2 formation heating provides a profound heating contribution in the outer layers of the model clumps. The contribution of PAH surfaces to the photoelectric heating and H2 formation provides a boost to the temperature of outer cloud layers, which is clearly traced by high-J CO lines. Increasing the fraction of small grains in the dust size distribution results in hotter gas in the outer cloud layers caused by more efficient heating and cooler cloud centers, which is in turn caused by the more efficient FUV extinction.
We use the SPIRE Fourier-Transform Spectrometer (FTS) on-board the ESA Herschel Space Telescope to analyse the submillimetre spectrum of the Ultra-compact HII region G29.96-0.02. Spectral lines from species including 13CO, CO, [CI], and [NII] are detected. A sparse map of the [NII] emission shows at least one other HII region neighbouring the clump containing the UCHII. The FTS spectra are combined with ISO SWS and LWS spectra and fluxes from the literature to present a detailed spectrum of the source spanning three orders of magnitude in wavelength. The quality of the spectrum longwards of 100 {mu}m allows us to fit a single temperature greybody with temperature 80.3pm0.6K and dust emissivity index 1.73pm0.02, an accuracy rarely obtained with previous instruments. We estimate a mass of 1500 Msol for the clump containing the HII region. The clumps bolometeric luminosity of 4 x 10^6 Lsol is comparable to, or slightly greater than, the known O-star powering the UCHII region.
Using the ligthcone from the cosmological hydrodynamical simulation Horizon-AGN, we produced a photometric catalogue over $0<z<4$ with apparent magnitudes in COSMOS, DES, LSST-like, and Euclid-like filters at depths comparable to these surveys. The virtual photometry accounts for the complex star formation history and metal enrichment of Horizon-AGN galaxies, and consistently includes magnitude errors, dust attenuation and absorption by inter-galactic medium. The COSMOS-like photometry is fitted in the same configuration as the COSMOS2015 catalogue. We then quantify random and systematic errors of photometric redshifts, stellar masses, and star-formation rates (SFR). Photometric redshifts and redshift errors capture the same dependencies on magnitude and redshift as found in COSMOS2015, excluding the impact of source extraction. COSMOS-like stellar masses are well recovered with a dispersion typically lower than 0.1 dex. The simple star formation histories and metallicities of the templates induce a systematic underestimation of stellar masses at $z<1.5$ by at most 0.12 dex. SFR estimates exhibit a dust-induced bimodality combined with a larger scatter (typically between 0.2 and 0.6 dex). We also use our mock catalogue to predict photometric redshifts and stellar masses in future imaging surveys. We stress that adding Euclid near-infrared photometry to the LSST-like baseline improves redshift accuracy especially at the faint end and decreases the outlier fraction by a factor $sim$2. It also considerably improves stellar masses, reducing the scatter up to a factor 3. It would therefore be mutually beneficial for LSST and Euclid to work in synergy.
We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric data in the 22-850micron range. We derive the total dust mass, temperature T and emissivity index beta of the galaxies through the fitting of their spectral energy distribution (SED) using a single modified black-body model (SMBB). We apply a hierarchical Bayesian approach that reduces the known degeneracy between T and beta. Applying the hierarchical approach, the strength of the T-beta anti-correlation is reduced from a Pearson correlation coefficient R=-0.79 to R=-0.52. For the JINGLE galaxies we measure dust temperatures in the range 17-30 K and dust emissivity indices beta in the range 0.6-2.2. We compare the SMBB model with the broken emissivity modified black-body (BMBB) and the two modified black-bodies (TMBB) models. The results derived with the SMBB and TMBB are in good agreement, thus applying the SMBB, which comes with fewer free parameters, does not penalize the measurement of the cold dust properties in the JINGLE sample. We investigate the relation between T and beta and other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample. We find that beta correlates with the stellar mass surface density (R=0.62) and anti-correlates with the HI mass fraction (M(HI)/M*, R=-0.65), whereas the dust temperature correlates strongly with the SFR normalized by the dust mass (R=0.73). These relations can be used to estimate T and beta in galaxies with insufficient photometric data available to measure them directly through SED fitting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا