Do you want to publish a course? Click here

Herschel-SPIRE spectroscopy of G29.96-0.02: fitting the full SED

316   0   0.0 ( 0 )
 Added by Jason Kirk
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the SPIRE Fourier-Transform Spectrometer (FTS) on-board the ESA Herschel Space Telescope to analyse the submillimetre spectrum of the Ultra-compact HII region G29.96-0.02. Spectral lines from species including 13CO, CO, [CI], and [NII] are detected. A sparse map of the [NII] emission shows at least one other HII region neighbouring the clump containing the UCHII. The FTS spectra are combined with ISO SWS and LWS spectra and fluxes from the literature to present a detailed spectrum of the source spanning three orders of magnitude in wavelength. The quality of the spectrum longwards of 100 {mu}m allows us to fit a single temperature greybody with temperature 80.3pm0.6K and dust emissivity index 1.73pm0.02, an accuracy rarely obtained with previous instruments. We estimate a mass of 1500 Msol for the clump containing the HII region. The clumps bolometeric luminosity of 4 x 10^6 Lsol is comparable to, or slightly greater than, the known O-star powering the UCHII region.



rate research

Read More

We present far-infrared spectra and maps of the DR21 molecular cloud core between 196 and 671 microns, using the Herschel-SPIRE spectrometer. Nineteen molecular lines originating from CO, 13CO, HCO+ and H2O, plus lines of [N II] and [CI] were recorded, including several transitions not previously detected. The CO lines are excited in warm gas with Tkin ~ 125 K and nH2 ~ 7 x 10^4 cm-3, CO column density N(CO) ~ 3.5 x 10^18 cm^-2 and a filling factor of ~ 12%, and appear to trace gas associated with an outflow. The rotational temperature analysis incorporating observations from ground-based telescopes reveals an additional lower excitation CO compoment which has a temperature ~ 78 K and N(CO) ~ 4.5 x 10^21 cm^-2. Astronomy & Astrophysics HERSCHEL special Issue, in press.
The first Herschel Hi-Gal images of the galactic plane unveil the far-infrared diffuse emission of the interstellar medium with an unprecedented angular resolution and sensitivity. In this paper, we present the first analysis of these data in combination with that of Spitzer Glimpse & Mipsgal. We selected a relatively diffuse and low excitation region of the l~59,^{circ} Hi-Gal Science Demonstration Phase field to perform a pixel by pixel fitting of the 8 to 500 microns SED using the DustEM dust emission model. We derived maps of the Very Small Grains (VSG) and PAH abundances from the model. Our analysis allows us to illustrate that the Aromatic Infrared Bands (AIB) intensity does not trace necessarily the PAH abundance but rather the product of abundance x column density x intensity of the exciting radiation field. We show that the spatial structure of PACS70microns map resembles the shorter wavelengths (e.g. IRAC8microns) maps, because they trace both the intensity of exciting radiation field and column density. We also show that the modeled VSG contribution to PACS70microns (PACS160microns) band intensity can be up to 50% (7%). The interpretation of diffuse emission spectra at these wavelengths must take stochastically heated particles into account. Finally, this preliminary study emphasizes the potential of analyzing the full dust SED sampled by Herschel and Spitzer data, with a physical dust model (DustEM) to reach the properties of the dust at simultaneously large and small scales.
153 - M.T. Beltran 2010
Context. In recent years, we have detected clear evidence of rotation in more than 5 hot molecular cores (HMCs). Their identification is confirmed by the fact that the rotation axes are parallel to the axes of the associated bipolar outflows. We have now pursued our investigation by extending the sample to 3 known massive cores, G10.62-0.38, G19.61-0.23, and G29.96-0.02. Aims. We wish to make a thorough study of the structure and kinematics of HMCs and corresponding molecular outflows to reveal possible velocity gradients indicative of rotation of the cores. Methods. We carried out PdBI observations at 2.7 and 1.4~mm of gas and dust with angular resolutions of 2-3, and 1-2, respectively. To trace both rotation and expansion, we simultaneously observed CH3CN, a typical HMC tracer, and 13CO, a typical outflow tracer. Results. The CH3CN(12-11) observations have revealed the existence of clear velocity gradients in the three HMCs oriented perpendicular to the direction of the bipolar outflows. For G19 and G29 the molecular outflows have been mapped in 13CO. The gradients have been interpreted as rotating toroids. The rotation temperatures, used to derive the mass of the cores, have been obtained by means of the rotational diagram method, and lie in the range of 87-244 K. The diameters and masses of the toroids lie in the range of 4550-12600 AU, and 28-415 Msun, respectively. Given that the dynamical masses are 2 to 30 times smaller than the masses of the cores (if the inclination of the toroids with respect to the plane of the sky is not much smaller than 45 degrees), we suggest that the toroids could be accreting onto the embedded cluster. For G19 and G29, the collapse is also suggested by the redshifted absorption seen in the 13CO(2-1) line. We infer that infall onto the embedded (proto)stars must proceed with rates of 1E-2 Msun/yr, and on timescales of the order of 4E3-1E4yr...
We present observations of the nearby spiral galaxy IC342 with the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer. The spectral range afforded by SPIRE, 196-671 microns, allows us to access a number of 12CO lines from J=4--3 to J=13--12 with the highest J transitions observed for the first time. In addition we present measurements of 13CO, [CI] and [NII]. We use a radiative transfer code coupled with Bayesian likelihood analysis to model and constrain the temperature, density and column density of the gas. We find two 12CO components, one at 35 K and one at 400 K with CO column densities of 6.3x10^{17} cm^{-2} and 0.4x10^{17} cm^{-2} and CO gas masses of 1.26x10^{7} Msolar and 0.15x10^{7} Msolar, for the cold and warm components, respectively. The inclusion of the high-J 12CO line observations, indicate the existence of a much warmer gas component (~400 K) confirming earlier findings from H_{2} rotational line analysis from ISO and Spitzer. The mass of the warm gas is 10% of the cold gas, but it likely dominates the CO luminosity. In addition, we detect strong emission from [NII] 205microns and the {3}P_{1}->{3}P_{0} and {3}P_{2} ->{3}P_{1} [CI] lines at 370 and 608 microns, respectively. The measured 12CO line ratios can be explained by Photon-dominated region (PDR) models although additional heating by e.g. cosmic rays cannot be excluded. The measured [CI] line ratio together with the derived [C] column density of 2.1x10^{17} cm^{-2} and the fact that [CI] is weaker than CO emission in IC342 suggests that [CI] likely arises in a thin layer on the outside of the CO emitting molecular clouds consistent with PDRs playing an important role.
182 - M.T. Beltran 2013
Context. G29.96-0.02 is a high-mass star-forming cloud observed at 70, 160, 250, 350, and 500 microns as part of the Herschel survey of the Galactic Plane during the Science Demonstration Phase. Aims. We wish to conduct a far-infrared study of the sources associated with this star-forming region by estimating their physical properties and evolutionary stage, and investigating the clump mass function, the star formation efficiency and rate in the cloud. Methods. We have identified the Hi-GAL sources associated with the cloud, searched for possible counterparts at centimeter and infrared wavelengths, fitted their spectral energy distribution and estimated their physical parameters. Results. A total of 198 sources have been detected in all 5 Hi-GAL bands, 117 of which are associated with 24 microns emission and 87 of which are not associated with 24 microns emission. We called the former sources 24 microns-bright and the latter ones 24 microns-dark. The [70-160] color of the 24 microns-dark sources is smaller than that of the 24 microns-bright ones. The 24 microns-dark sources have lower L_bol and L_bol/M_env than the 24 microns-bright ones for similar M_env, which suggests that they are in an earlier evolutionary phase. The G29-SFR cloud is associated with 10 NVSS sources and with extended centimeter continuum emission well correlated with the 70 microns emission. Most of the NVSS sources appear to be early B or late O-type stars. The most massive and luminous Hi-GAL sources in the cloud are located close to the G29-UC region, which suggests that there is a privileged area for massive star formation towards the center of the G29-SFR cloud. Almost all the Hi-GAL sources have masses well above the Jeans mass but only 5% have masses above the virial mass, which indicates that most of the sources are stable against gravitational collapse. The sources with M_env > M_virial and that ...
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا