Do you want to publish a course? Click here

Detecting AI Trojans Using Meta Neural Analysis

68   0   0.0 ( 0 )
 Added by Xiaojun Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In machine learning Trojan attacks, an adversary trains a corrupted model that obtains good performance on normal data but behaves maliciously on data samples with certain trigger patterns. Several approaches have been proposed to detect such attacks, but they make undesirable assumptions about the attack strategies or require direct access to the trained models, which restricts their utility in practice. This paper addresses these challenges by introducing a Meta Neural Trojan Detection (MNTD) pipeline that does not make assumptions on the attack strategies and only needs black-box access to models. The strategy is to train a meta-classifier that predicts whether a given target model is Trojaned. To train the meta-model without knowledge of the attack strategy, we introduce a technique called jumbo learning that samples a set of Trojaned models following a general distribution. We then dynamically optimize a query set together with the meta-classifier to distinguish between Trojaned and benign models. We evaluate MNTD with experiments on vision, speech, tabular data and natural language text datasets, and against different Trojan attacks such as data poisoning attack, model manipulation attack, and latent attack. We show that MNTD achieves 97% detection AUC score and significantly outperforms existing detection approaches. In addition, MNTD generalizes well and achieves high detection performance against unforeseen attacks. We also propose a robust MNTD pipeline which achieves 90% detection AUC even when the attacker aims to evade the detection with full knowledge of the system.

rate research

Read More

AI has provided us with the ability to automate tasks, extract information from vast amounts of data, and synthesize media that is nearly indistinguishable from the real thing. However, positive tools can also be used for negative purposes. In particular, cyber adversaries can use AI (such as machine learning) to enhance their attacks and expand their campaigns. Although offensive AI has been discussed in the past, there is a need to analyze and understand the threat in the context of organizations. For example, how does an AI-capable adversary impact the cyber kill chain? Does AI benefit the attacker more than the defender? What are the most significant AI threats facing organizations today and what will be their impact on the future? In this survey, we explore the threat of offensive AI on organizations. First, we present the background and discuss how AI changes the adversarys methods, strategies, goals, and overall attack model. Then, through a literature review, we identify 33 offensive AI capabilities which adversaries can use to enhance their attacks. Finally, through a user study spanning industry and academia, we rank the AI threats and provide insights on the adversaries.
The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an artificial DC. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of port scans and botnets, where it has produced impressive results with relatively low rates of false positives.
Online retail, eCommerce, frequently falls victim to fraud conducted by malicious customers (fraudsters) who obtain goods or services through deception. Fraud coordinated by groups of professional fraudsters that place several fraudulent orders to maximize their gain is referred to as organized fraud. Existing approaches to fraud detection typically analyze orders in isolation and they are not effective at identifying groups of fraudulent orders linked to organized fraud. These also wrongly identify many legitimate orders as fraud, which hinders their usage for automated fraud cancellation. We introduce a novel solution to detect organized fraud by analyzing orders in bulk. Our approach is based on clustering and aims to group together fraudulent orders placed by the same group of fraudsters. It selectively uses two existing techniques, agglomerative clustering and sampling to recursively group orders into small clusters in a reasonable amount of time. We assess our clustering technique on real-world orders placed on the Zalando website, the largest online apparel retailer in Europe1. Our clustering processes 100,000s of orders in a few hours and groups 35-45% of fraudulent orders together. We propose a simple technique built on top of our clustering that detects 26.2% of fraud while raising false alarms for only 0.1% of legitimate orders.
59 - Huimin Peng 2021
This paper briefly reviews the history of meta-learning and describes its contribution to general AI. Meta-learning improves model generalization capacity and devises general algorithms applicable to both in-distribution and out-of-distribution tasks potentially. General AI replaces task-specific models with general algorithmic systems introducing higher level of automation in solving diverse tasks using AI. We summarize main contributions of meta-learning to the developments in general AI, including memory module, meta-learner, coevolution, curiosity, forgetting and AI-generating algorithm. We present connections between meta-learning and general AI and discuss how meta-learning can be used to formulate general AI algorithms.
136 - Daniel C. Elton 2020
The ability to explain decisions made by AI systems is highly sought after, especially in domains where human lives are at stake such as medicine or autonomous vehicles. While it is often possible to approximate the input-output relations of deep neural networks with a few human-understandable rules, the discovery of the double descent phenomena suggests that such approximations do not accurately capture the mechanism by which deep neural networks work. Double descent indicates that deep neural networks typically operate by smoothly interpolating between data points rather than by extracting a few high level rules. As a result, neural networks trained on complex real world data are inherently hard to interpret and prone to failure if asked to extrapolate. To show how we might be able to trust AI despite these problems we introduce the concept of self-explaining AI. Self-explaining AIs are capable of providing a human-understandable explanation of each decision along with confidence levels for both the decision and explanation. For this approach to work, it is important that the explanation actually be related to the decision, ideally capturing the mechanism used to arrive at the explanation. Finally, we argue it is important that deep learning based systems include a warning light based on techniques from applicability domain analysis to warn the user if a model is asked to extrapolate outside its training distribution. For a video presentation of this talk see https://www.youtube.com/watch?v=Py7PVdcu7WY& .

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا