Do you want to publish a course? Click here

$(k,n)$-fractonic Maxwell theory

65   0   0.0 ( 0 )
 Added by Vijay Shenoy B
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fractons emerge as charges with reduced mobility in a new class of gauge theories. Here, we generalise fractonic theories of $U(1)$ type to what we call $(k,n)$-fractonic Maxwell theory, which employs symmetric order-$n$ tensors of $k$-forms (rank-$k$ antisymmetric tensors) as vector potentials. The generalisation has two key manifestations. First, the objects with mobility restrictions extend beyond simple charges to higher order multipoles (dipoles, quadrupoles, $ldots$) all the way to $n^mathrm{th}$-order multipoles. Second, these fractonic charges themselves are characterized by tensorial densities of $(k-1)$-dimensional extended objects. The source-free sector exhibits `photonic excitations with dispersion $omegasim q^n$.



rate research

Read More

89 - Wilbur Shirley 2020
We consider fermionic systems in which fermion parity is conserved within rigid subsystems, and describe an explicit procedure for gauging such subsystem fermion parity symmetries to obtain bosonic spin Hamiltonians. We show that gauging planar or fractal subsystem fermion parity symmetry in three spatial dimensions gives rise to a plethora of exactly solvable spin models exhibiting novel gapped fractonic orders characterized by emergent fermionic gauge theory. The low energy excitations of these models include fractional quasiparticles with constrained mobility and emergent fermionic statistics. We illustrate this phenomenon through a series of examples including fermionic analogs of both foliated fracton phases and fractal spin liquids. We find that the foliated analogs actually exhibit the same fractonic order as their bosonic counterparts, while this is not generally the case for fermionic fractal spin liquids.
In three dimensions, gapped phases can support fractonic quasiparticle excitations, which are either completely immobile or can only move within a low-dimensional submanifold, a peculiar topological phenomenon going beyond the conventional framework of topological quantum field theory. In this work we explore fractonic topological phases using three-dimensional coupled wire constructions, which have proven to be a successful tool to realize and characterize topological phases in two dimensions. We find that both gapped and gapless phases with fractonic excitations can emerge from the models. In the gapped case, we argue that fractonic excitations are mobile along the wire direction, but their mobility in the transverse plane is generally reduced. We show that the excitations in general have infinite-order fusion structure, distinct from previously known gapped fracton models. Like the 2D coupled wire constructions, many models exhibit gapless (or even chiral) surface states, which can be described by infinite-component Luttinger liquids. However, the universality class of the surface theory strongly depends on the surface orientation, thus revealing a new type of bulk-boundary correspondence unique to fracton phases.
Fractonic phases of matter are novel quantum ground states supporting sub-dimensional emergent excitations with mobility restrictions and/or immobile fractons. The ground state degeneracy of such phases is sub-extensive and depends on the geometry of the underlying lattice. Due to these unusual properties, fractonic phases are considered as models for quantum memory or as examples of quantum glassy behaviors. While there exist a number of exactly solvable models with interactions between multiple particles/spins (twelve or more), the realization of such models in real materials is extremely challenging. In this work, we provide a realistic quantum model of quadratic spin interactions on the breathing pyrochlore lattice, inspired by a classical spin model studied earlier. We show that the emergent excitations in this model are immobile when they are present alone. They can only move as a cluster or when they reside at the corners of a membrane excitation. Using the membrane operators acting on the ground state manifold, we construct degenerate ground states with periodic boundary conditions. It is shown that the ground state degeneracy explicitly depends on the lattice geometry. We discuss the implications of these results in light of the rank-2 tensor gauge theory.
2+1D multi-component $U(1)$ gauge theories with a Chern-Simons (CS) term provide a simple and complete characterization of 2+1D Abelian topological orders. In this paper, we extend the theory by taking the number of component gauge fields to infinity and find that they can describe interesting types of 3+1D fractonic order. Fractonic describes the peculiar phenomena that point excitations in certain strongly interacting systems either cannot move at all or are only allowed to move in a lower dimensional sub-manifold. In the simplest cases of infinite-component CS gauge theory, different components do not couple to each other and the theory describes a decoupled stack of 2+1D fractional Quantum Hall systems with quasi-particles moving only in 2D planes -- hence a fractonic system. We find that when the component gauge fields do couple through the CS term, more varieties of fractonic orders are possible. For example, they may describe foliated fractonic systems for which increasing the system size requires insertion of nontrivial 2+1D topological states. Moreover, we find examples which lie beyond the foliation framework, characterized by 2D excitations of infinite order and braiding statistics that are not strictly local.
We calculate the intensity of the polariton mediated inelastic light scattering in semiconductor microcavities. We treat the exciton-photon coupling nonperturbatively and incorporate lifetime effects in both excitons and photons, and a coupling of the photons to the electron-hole continuum. Taking the matrix elements as fitting parameters, the results are in excellent agreement with measured Raman intensities due to optical phonons resonant with the upper polariton branches in II-VI microcavities with embedded CdTe quantum wells.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا