Do you want to publish a course? Click here

Fractonic order in infinite-component Chern-Simons gauge theories

205   0   0.0 ( 0 )
 Added by Xiuqi Ma
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

2+1D multi-component $U(1)$ gauge theories with a Chern-Simons (CS) term provide a simple and complete characterization of 2+1D Abelian topological orders. In this paper, we extend the theory by taking the number of component gauge fields to infinity and find that they can describe interesting types of 3+1D fractonic order. Fractonic describes the peculiar phenomena that point excitations in certain strongly interacting systems either cannot move at all or are only allowed to move in a lower dimensional sub-manifold. In the simplest cases of infinite-component CS gauge theory, different components do not couple to each other and the theory describes a decoupled stack of 2+1D fractional Quantum Hall systems with quasi-particles moving only in 2D planes -- hence a fractonic system. We find that when the component gauge fields do couple through the CS term, more varieties of fractonic orders are possible. For example, they may describe foliated fractonic systems for which increasing the system size requires insertion of nontrivial 2+1D topological states. Moreover, we find examples which lie beyond the foliation framework, characterized by 2D excitations of infinite order and braiding statistics that are not strictly local.

rate research

Read More

89 - Wilbur Shirley 2020
We consider fermionic systems in which fermion parity is conserved within rigid subsystems, and describe an explicit procedure for gauging such subsystem fermion parity symmetries to obtain bosonic spin Hamiltonians. We show that gauging planar or fractal subsystem fermion parity symmetry in three spatial dimensions gives rise to a plethora of exactly solvable spin models exhibiting novel gapped fractonic orders characterized by emergent fermionic gauge theory. The low energy excitations of these models include fractional quasiparticles with constrained mobility and emergent fermionic statistics. We illustrate this phenomenon through a series of examples including fermionic analogs of both foliated fracton phases and fractal spin liquids. We find that the foliated analogs actually exhibit the same fractonic order as their bosonic counterparts, while this is not generally the case for fermionic fractal spin liquids.
We formulate a Chern-Simons composite fermion theory for Fractional Chern Insulators (FCIs), whereby bare fermions are mapped into composite fermions coupled to a lattice Chern-Simons gauge theory. We apply this construction to a Chern insulator model on the kagome lattice and identify a rich structure of gapped topological phases characterized by fractionalized excitations including states with unequal filling and Hall conductance. Gapped states with the same Hall conductance at different filling fractions are characterized as realizing distinct symmetry fractionalization classes.
67 - Robert D. Pisarski 2021
I recount my personal experience interacting with Roman Jackiw in the 1980s, when we both worked on Chern-Simons theories in three dimensions.
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schroedinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework.
78 - Rabin Banerjee 2021
Recent discussions of higher rank symmetric (fractonic) gauge theories have revealed the important role of Gauss constraints. This has prompted the present study where a detailed hamiltonian analysis of such theories is presented. Besides a general treatment, the traceless scalar charge theory is considered in details. A new form for the action is given which, in 2+1 dimensions, yields area preserving diffeomorphisms. Investigation of global symmetries reveals that this diffeomorphism invariance induces a noncommuting charge algebra that gets exactly mapped to the algebra of coordinates in the lowest Landau level problem. Connections of this charge algebra to noncommutative fluid dynamics and magnetohydrodynamics are shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا