Do you want to publish a course? Click here

Correlating the nanoscale structural, magnetic and magneto-transport properties in SrRuO3-based perovskite oxide ultra-thin films

75   0   0.0 ( 0 )
 Added by Dmytro Ivaneyko
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the structural and magnetic properties of bare SrRuO$_3$ (SRO) ultra-thin films and SrRuO$_3$/SrIrO$_3$/SrZrO$_3$ (SRO/SIO/SZO: RIZ) trilayer heterostructures between 10 K and 80 K, by comparing macroscopic data using magneto-optical Kerr effect (MOKE) and magneto-transport (anomalous Hall effect: AHE), with nanoscale fingerprints when applying non-contact scanning force microscopy (nc-SFM) and magnetic force microscopy (MFM). SRO and RIZ ultra-thin films were epitaxially grown at 650C onto vicinal SrTiO$_3$ (100) single-crystalline substrates to a nominal thickness of 4 and 4/2/2 unit cells (uc), respectively. Our correlated analysis allows associating topographic sample features of overgrown individual layers to their residual magnetization, as is shown here to be relevant for interpreting the macroscopic AHE data. Although the hump-like features in the AHE suggest a magnetically extured skyrmion phase to exist around 55 K associated to the topological Hall effect (THE), both our MOKE and MFM data cannot support this theory. In contrast, our SFM/MFM local-scale analysis finds the local coercive field to be strongly dependent on the effective layer thickness and stoichiometry in both the SRO and RIZ samples, with huge impact on the local band-structure. In fact, it is these variations that in turn mimic a potential THE through anomalies in the AHE resistivity loops.

rate research

Read More

Although a cubic phase of Mn$_3$Ga with an antiferromagnetic order has been theoretically predicted, it has not been experimentally verified in a bulk or film form. Here, we report the structural, magnetic, and electrical properties of antiferromagnetic cubic Mn$_3$Ga (C-Mn$_3$Ga) thin films, in comparison with ferrimagnetic tetragonal Mn$_3$Ga (T-Mn3Ga). The structural analyses reveal that C-Mn$_3$Ga is hetero-epitaxially grown on MgO substrate with the Cu$_3$Au-type cubic structure, which transforms to T-Mn$_3$Ga as the RF sputtering power increases. The magnetic and magnetotransport data show the antiferromagnetic transition at T$_N$ = 400 K for C-Mn$_3$Ga and the ferrimagnetic transition at T$_C$ = 820 K for T-Mn$_3$Ga. Furthermore, we find that the antiferromagnetic C-Mn$_3$Ga exhibits a higher electrical resistivity than the ferrimagnetic T-Mn$_3$Ga, which can be understood by spin-dependent scattering mechanism.
We report low-temperature measurements of current-voltage characteristics for highly conductive Nb/Al-AlOx-Nb junctions with thicknesses of the Al interlayer ranging from 40 to 150 nm and ultra-thin barriers formed by diffusive oxidation of the Al surface. In the superconducting state these devices have revealed a strong subgap current leakage. Analyzing Cooper-pair and quasiparticle currents across the devices, we conclude that the strong suppression of the subgap resistance comparing with conventional tunnel junctions originates from a universal bimodal distribution of transparencies across the Al-oxide barrier proposed earlier by Schep and Bauer. We suggest a simple physical explanation of its source in the nanometer-thick oxide films relating it to strong local barrier-height fluctuations which are generated by oxygen vacancies in thin aluminum oxide tunnel barriers formed by thermal oxidation.
The electronic and magnetic properties of transition metal dichalcogenides are known to be extremely sensitive to their structure. In this paper we study the effect of structure on the electronic and magnetic properties of mono- and bilayer $VSe_2$ films grown using molecular beam epitaxy. $VSe_2$ has recently attracted much attention due to reports of emergent ferromagnetism in the 2D limit. To understand this important compound, high quality 1T and distorted 1T films were grown at temperatures of 200 $^text{o}$C and 450 $^text{o}$C respectively and studied using 4K Scanning Tunneling Microscopy/Spectroscopy. The measured density of states and the charge density wave (CDW) patterns were compared to band structure and phonon dispersion calculations. Films in the 1T phase reveal different CDW patterns in the first layer compared to the second. Interestingly, we find the second layer of the 1T-film shows a CDW pattern with 4a $times$ 4a periodicity which is the 2D version of the bulk CDW observed in this compound. Our phonon dispersion calculations confirm the presence of a soft phonon at the correct wavevector that leads to this CDW. In contrast, the first layer of distorted 1T phase films shows a strong stripe feature with varying periodicities, while the second layer displays no observable CDW pattern. Finally, we find that the monolayer 1T $VSe_2$ film is weakly ferromagnetic, with ~ $3.5 {mu}_B$ per unit similar to previous reports.
Thin films of the ferromagnetic metal SrRuO3 (SRO) show a varying easy magnetization axis depending on the epitaxial strain and undergo a metal-to-insulator transition with decreasing film thickness. We have investigated the magnetic properties of SRO thin films with varying thicknesses fabricated on SrTiO3(001) substrates by soft x-ray magnetic circular dichroism (XMCD) at the Ru M2,3 edge. Results have shown that, with decreasing film thickness, the film changes from ferromagnetic to non-magnetic around 3monolayer thickness, consistent with previous magnetization and magneto-optical Kerr effect measurements. The orbital magnetic moment perpendicular to the film was found to be ~ 0.1{mu}B/Ru atom, and remained nearly unchanged with decreasing film thickness while the spin magnetic moment decreases. Mechanism for the formation of the orbital magnetic moment is discussed based on the electronic structure of the compressively strained SRO film.
Amorphous molybdenum silicide compounds have attracted significant interest for potential device applications, particularly in single-photon detector. In this work, the temperature-dependent resistance and magneto-resistance behaviors were measured to reveal the charge transport mechanism, which is of great importance for applications but is still insufficient. It is found that Mott variable hopping conductivity dominates the transport of sputtered amorphous molybdenum silicide thin films. Additionally, the observed magneto-resistance crossover from negative to positive is ascribed to the interference enhancement and the shrinkage of electron wave function, both of which vary the probability of hopping between localized sites.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا