Do you want to publish a course? Click here

Piracy Resistant Watermarks for Deep Neural Networks

91   0   0.0 ( 0 )
 Added by Emily Wenger
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

As companies continue to invest heavily in larger, more accurate and more robust deep learning models, they are exploring approaches to monetize their models while protecting their intellectual property. Model licensing is promising, but requires a robust tool for owners to claim ownership of models, i.e. a watermark. Unfortunately, current designs have not been able to address piracy attacks, where third parties falsely claim model ownership by embedding their own pirate watermarks into an already-watermarked model. We observe that resistance to piracy attacks is fundamentally at odds with the current use of incremental training to embed watermarks into models. In this work, we propose null embedding, a new way to build piracy-resistant watermarks into DNNs that can only take place at a models initial training. A null embedding takes a bit string (watermark value) as input, and builds strong dependencies between the models normal classification accuracy and the watermark. As a result, attackers cannot remove an embedded watermark via tuning or incremental training, and cannot add new pirate watermarks to already watermarked models. We empirically show that our proposed watermarks achieve piracy resistance and other watermark properties, over a wide range of tasks and models. Finally, we explore a number of adaptive counter-measures, and show our watermark remains robust against a variety of model modifications, including model fine-tuning, compression, and existing methods to detect/remove backdoors. Our watermarked models are also amenable to transfer learning without losing their watermark properties.



rate research

Read More

Creating a state-of-the-art deep-learning system requires vast amounts of data, expertise, and hardware, yet research into embedding copyright protection for neural networks has been limited. One of the main methods for achieving such protection involves relying on the susceptibility of neural networks to backdoor attacks, but the robustness of these tactics has been primarily evaluated against pruning, fine-tuning, and model inversion attacks. In this work, we propose a neural network laundering algorithm to remove black-box backdoor watermarks from neural networks even when the adversary has no prior knowledge of the structure of the watermark. We are able to effectively remove watermarks used for recent defense or copyright protection mechanisms while achieving test accuracies above 97% and 80% for both MNIST and CIFAR-10, respectively. For all backdoor watermarking methods addressed in this paper, we find that the robustness of the watermark is significantly weaker than the original claims. We also demonstrate the feasibility of our algorithm in more complex tasks as well as in more realistic scenarios where the adversary is able to carry out efficient laundering attacks using less than 1% of the original training set size, demonstrating that existing backdoor watermarks are not sufficient to reach their claims.
Trigger set-based watermarking schemes have gained emerging attention as they provide a means to prove ownership for deep neural network model owners. In this paper, we argue that state-of-the-art trigger set-based watermarking algorithms do not achieve their designed goal of proving ownership. We posit that this impaired capability stems from two common experimental flaws that the existing research practice has committed when evaluating the robustness of watermarking algorithms: (1) incomplete adversarial evaluation and (2) overlooked adaptive attacks. We conduct a comprehensive adversarial evaluation of 10 representative watermarking schemes against six of the existing attacks and demonstrate that each of these watermarking schemes lacks robustness against at least two attacks. We also propose novel adaptive attacks that harness the adversarys knowledge of the underlying watermarking algorithm of a target model. We demonstrate that the proposed attacks effectively break all of the 10 watermarking schemes, consequently allowing adversaries to obscure the ownership of any watermarked model. We encourage follow-up studies to consider our guidelines when evaluating the robustness of their watermarking schemes via conducting comprehensive adversarial evaluation that include our adaptive attacks to demonstrate a meaningful upper bound of watermark robustness.
98 - Shuhan Yuan , Xintao Wu , Jun Li 2017
In this paper, we focus on fraud detection on a signed graph with only a small set of labeled training data. We propose a novel framework that combines deep neural networks and spectral graph analysis. In particular, we use the node projection (called as spectral coordinate) in the low dimensional spectral space of the graphs adjacency matrix as input of deep neural networks. Spectral coordinates in the spectral space capture the most useful topology information of the network. Due to the small dimension of spectral coordinates (compared with the dimension of the adjacency matrix derived from a graph), training deep neural networks becomes feasible. We develop and evaluate two neural networks, deep autoencoder and convolutional neural network, in our fraud detection framework. Experimental results on a real signed graph show that our spectrum based deep neural networks are effective in fraud detection.
Watermarking of deep neural networks (DNN) can enable their tracing once released by a data owner. In this paper, we generalize white-box watermarking algorithms for DNNs, where the data owner needs white-box access to the model to extract the watermark. White-box watermarking algorithms have the advantage that they do not impact the accuracy of the watermarked model. We propose Robust whIte-box GAn watermarking (RIGA), a novel white-box watermarking algorithm that uses adversarial training. Our extensive experiments demonstrate that the proposed watermarking algorithm not only does not impact accuracy, but also significantly improves the covertness and robustness over the current state-of-art.
Adversarial machine learning in the context of image processing and related applications has received a large amount of attention. However, adversarial machine learning, especially adversarial deep learning, in the context of malware detection has received much less attention despite its apparent importance. In this paper, we present a framework for enhancing the robustness of Deep Neural Networks (DNNs) against adversarial malware samples, dubbed Hashing Transformation Deep Neural Networks} (HashTran-DNN). The core idea is to use hash functions with a certain locality-preserving property to transform samples to enhance the robustness of DNNs in malware classification. The framework further uses a Denoising Auto-Encoder (DAE) regularizer to reconstruct the hash representations of samples, making the resulting DNN classifiers capable of attaining the locality information in the latent space. We experiment with two concrete instantiations of the HashTran-DNN framework to classify Android malware. Experimental results show that four known attacks can render standard DNNs useless in classifying Android malware, that known defenses can at most defend three of the four attacks, and that HashTran-DNN can effectively defend against all of the four attacks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا