Do you want to publish a course? Click here

Neural Network Laundering: Removing Black-Box Backdoor Watermarks from Deep Neural Networks

229   0   0.0 ( 0 )
 Added by William Aiken
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Creating a state-of-the-art deep-learning system requires vast amounts of data, expertise, and hardware, yet research into embedding copyright protection for neural networks has been limited. One of the main methods for achieving such protection involves relying on the susceptibility of neural networks to backdoor attacks, but the robustness of these tactics has been primarily evaluated against pruning, fine-tuning, and model inversion attacks. In this work, we propose a neural network laundering algorithm to remove black-box backdoor watermarks from neural networks even when the adversary has no prior knowledge of the structure of the watermark. We are able to effectively remove watermarks used for recent defense or copyright protection mechanisms while achieving test accuracies above 97% and 80% for both MNIST and CIFAR-10, respectively. For all backdoor watermarking methods addressed in this paper, we find that the robustness of the watermark is significantly weaker than the original claims. We also demonstrate the feasibility of our algorithm in more complex tasks as well as in more realistic scenarios where the adversary is able to carry out efficient laundering attacks using less than 1% of the original training set size, demonstrating that existing backdoor watermarks are not sufficient to reach their claims.

rate research

Read More

As companies continue to invest heavily in larger, more accurate and more robust deep learning models, they are exploring approaches to monetize their models while protecting their intellectual property. Model licensing is promising, but requires a robust tool for owners to claim ownership of models, i.e. a watermark. Unfortunately, current designs have not been able to address piracy attacks, where third parties falsely claim model ownership by embedding their own pirate watermarks into an already-watermarked model. We observe that resistance to piracy attacks is fundamentally at odds with the current use of incremental training to embed watermarks into models. In this work, we propose null embedding, a new way to build piracy-resistant watermarks into DNNs that can only take place at a models initial training. A null embedding takes a bit string (watermark value) as input, and builds strong dependencies between the models normal classification accuracy and the watermark. As a result, attackers cannot remove an embedded watermark via tuning or incremental training, and cannot add new pirate watermarks to already watermarked models. We empirically show that our proposed watermarks achieve piracy resistance and other watermark properties, over a wide range of tasks and models. Finally, we explore a number of adaptive counter-measures, and show our watermark remains robust against a variety of model modifications, including model fine-tuning, compression, and existing methods to detect/remove backdoors. Our watermarked models are also amenable to transfer learning without losing their watermark properties.
Deep neural networks have been widely applied and achieved great success in various fields. As training deep models usually consumes massive data and computational resources, trading the trained deep models is highly demanded and lucrative nowadays. Unfortunately, the naive trading schemes typically involves potential risks related to copyright and trustworthiness issues, e.g., a sold model can be illegally resold to others without further authorization to reap huge profits. To tackle this problem, various watermarking techniques are proposed to protect the model intellectual property, amongst which the backdoor-based watermarking is the most commonly-used one. However, the robustness of these watermarking approaches is not well evaluated under realistic settings, such as limited in-distribution data availability and agnostic of watermarking patterns. In this paper, we benchmark the robustness of watermarking, and propose a novel backdoor-based watermark removal framework using limited data, dubbed WILD. The proposed WILD removes the watermarks of deep models with only a small portion of training data, and the output model can perform the same as models trained from scratch without watermarks injected. In particular, a novel data augmentation method is utilized to mimic the behavior of watermark triggers. Combining with the distribution alignment between the normal and perturbed (e.g., occluded) data in the feature space, our approach generalizes well on all typical types of trigger contents. The experimental results demonstrate that our approach can effectively remove the watermarks without compromising the deep model performance for the original task with the limited access to training data.
133 - Kaidi Xu , Sijia Liu , Pin-Yu Chen 2020
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called textit{backdoor attack}, which injects a backdoor trigger to a small portion of training data (also known as data poisoning) such that the trained DNN induces misclassification while facing examples with this trigger. To be specific, we carefully study the effect of both real and synthetic backdoor attacks on the internal response of vanilla and backdoored DNNs through the lens of Gard-CAM. Moreover, we show that the backdoor attack induces a significant bias in neuron activation in terms of the $ell_infty$ norm of an activation map compared to its $ell_1$ and $ell_2$ norm. Spurred by our results, we propose the textit{$ell_infty$-based neuron pruning} to remove the backdoor from the backdoored DNN. Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
Deep learning models are increasingly used in mobile applications as critical components. Unlike the program bytecode whose vulnerabilities and threats have been widely-discussed, whether and how the deep learning models deployed in the applications can be compromised are not well-understood since neural networks are usually viewed as a black box. In this paper, we introduce a highly practical backdoor attack achieved with a set of reverse-engineering techniques over compiled deep learning models. The core of the attack is a neural conditional branch constructed with a trigger detector and several operators and injected into the victim model as a malicious payload. The attack is effective as the conditional logic can be flexibly customized by the attacker, and scalable as it does not require any prior knowledge from the original model. We evaluated the attack effectiveness using 5 state-of-the-art deep learning models and real-world samples collected from 30 users. The results demonstrated that the injected backdoor can be triggered with a success rate of 93.5%, while only brought less than 2ms latency overhead and no more than 1.4% accuracy decrease. We further conducted an empirical study on real-world mobile deep learning apps collected from Google Play. We found 54 apps that were vulnerable to our attack, including popular and security-critical ones. The results call for the awareness of deep learning application developers and auditors to enhance the protection of deployed models.
Watermarking of deep neural networks (DNN) can enable their tracing once released by a data owner. In this paper, we generalize white-box watermarking algorithms for DNNs, where the data owner needs white-box access to the model to extract the watermark. White-box watermarking algorithms have the advantage that they do not impact the accuracy of the watermarked model. We propose Robust whIte-box GAn watermarking (RIGA), a novel white-box watermarking algorithm that uses adversarial training. Our extensive experiments demonstrate that the proposed watermarking algorithm not only does not impact accuracy, but also significantly improves the covertness and robustness over the current state-of-art.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا