No Arabic abstract
Let $mathcal{C}$ and $mathcal{D}$ be hereditary graph classes. Consider the following problem: given a graph $Ginmathcal{D}$, find a largest, in terms of the number of vertices, induced subgraph of $G$ that belongs to $mathcal{C}$. We prove that it can be solved in $2^{o(n)}$ time, where $n$ is the number of vertices of $G$, if the following conditions are satisfied: * the graphs in $mathcal{C}$ are sparse, i.e., they have linearly many edges in terms of the number of vertices; * the graphs in $mathcal{D}$ admit balanced separators of size governed by their density, e.g., $mathcal{O}(Delta)$ or $mathcal{O}(sqrt{m})$, where $Delta$ and $m$ denote the maximum degree and the number of edges, respectively; and * the considered problem admits a single-exponential fixed-parameter algorithm when parameterized by the treewidth of the input graph. This leads, for example, to the following corollaries for specific classes $mathcal{C}$ and $mathcal{D}$: * a largest induced forest in a $P_t$-free graph can be found in $2^{tilde{mathcal{O}}(n^{2/3})}$ time, for every fixed $t$; and * a largest induced planar graph in a string graph can be found in $2^{tilde{mathcal{O}}(n^{3/4})}$ time.
Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatrices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any binary matrix that does not have the consecutive-ones property.
We give algorithms with running time $2^{O({sqrt{k}log{k}})} cdot n^{O(1)}$ for the following problems. Given an $n$-vertex unit disk graph $G$ and an integer $k$, decide whether $G$ contains (1) a path on exactly/at least $k$ vertices, (2) a cycle on exactly $k$ vertices, (3) a cycle on at least $k$ vertices, (4) a feedback vertex set of size at most $k$, and (5) a set of $k$ pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time $2^{O(k^{0.75}log{k})} cdot n^{O(1)}$. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to $k^{O(1)}$ and there exists a solution that crosses every separator at most $O(sqrt{k})$ times. The running times of our algorithms are optimal up to the $log{k}$ factor in the exponent, assuming the Exponential Time Hypothesis.
Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on $n$ vertices and a positive integer parameter $k$, find if there exist $k$ edges (arcs) whose deletion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the vertices have even degrees---where the resulting graph is emph{Eulerian}---the problem is called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [emph{Algorithmica, 2014}] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time $2^{O(k log k)}n^{O(1)}$. They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. In this paper we answer their question in the affirmative: using the technique of computing emph{representative families of co-graphic matroids} we design algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity.
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-disjoint (or node-disjoint) $u$-$v$ paths. This is a fundamental problem in combinatorial optimization that captures numerous well-studied problems in graph theory and graph algorithms. In this paper, we consider the version of the problem where we are given a $lambda$-edge connected (di)graph $G$ with a non-negative weight function $w$ on the edges and an integer $k$, and the objective is to find a minimum weight spanning subgraph $H$ that is also $lambda$-edge connected, and has at least $k$ fewer edges than $G$. In other words, we are asked to compute a maximum weight subset of edges, of cardinality up to $k$, which may be safely deleted from $G$. Motivated by this question, we investigate the connectivity properties of $lambda$-edge connected (di)graphs and obtain algorithmically significant structural results. We demonstrate the importance of our structural results by presenting an algorithm running in time $2^{O(k log k)} |V(G)|^{O(1)}$ for $lambda$-ECS, thus proving its fixed-parameter tractability. We follow up on this result and obtain the {em first polynomial compression} for $lambda$-ECS on unweighted graphs. As a consequence, we also obtain the first fixed parameter tractable algorithm, and a polynomial kernel for a parameterized version of the classic Mininum Equivalent Graph problem. We believe that our structural results are of independent interest and will play a crucial role in the design of algorithms for connectivity-constrained problems in general and the SNDP problem in particular.
We connect the study of pseudodeterministic algorithms to two major open problems about the structural complexity of $mathsf{BPTIME}$: proving hierarchy theorems and showing the existence of complete problems. Our main contributions can be summarised as follows. 1. We build on techniques developed to prove hierarchy theorems for probabilistic time with advice (Fortnow and Santhanam, FOCS 2004) to construct the first unconditional pseudorandom generator of polynomial stretch computable in pseudodeterministic polynomial time (with one bit of advice) that is secure infinitely often against polynomial-time computations. As an application of this construction, we obtain new results about the complexity of generating and representing prime numbers. 2. Oliveira and Santhanam (STOC 2017) established unconditionally that there is a pseudodeterministic algorithm for the Circuit Acceptance Probability Problem ($mathsf{CAPP}$) that runs in sub-exponential time and is correct with high probability over any samplable distribution on circuits on infinitely many input lengths. We show that improving this running time or obtaining a result that holds for every large input length would imply new time hierarchy theorems for probabilistic time. In addition, we prove that a worst-case polynomial-time pseudodeterministic algorithm for $mathsf{CAPP}$ would imply that $mathsf{BPP}$ has complete problems. 3. We establish an equivalence between pseudodeterministic construction of strings of large $mathsf{rKt}$ complexity (Oliveira, ICALP 2019) and the existence of strong hierarchy theorems for probabilistic time. More generally, these results suggest new approaches for designing pseudodeterministic algorithms for search problems and for unveiling the structure of probabilistic time.