Do you want to publish a course? Click here

Finding Even Subgraphs Even Faster

237   0   0.0 ( 0 )
 Added by Fahad Panolan
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on $n$ vertices and a positive integer parameter $k$, find if there exist $k$ edges (arcs) whose deletion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the vertices have even degrees---where the resulting graph is emph{Eulerian}---the problem is called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [emph{Algorithmica, 2014}] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time $2^{O(k log k)}n^{O(1)}$. They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. In this paper we answer their question in the affirmative: using the technique of computing emph{representative families of co-graphic matroids} we design algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity.



rate research

Read More

One of the most fundamental problems in computer science is the reachability problem: Given a directed graph and two vertices s and t, can s reach t via a path? We revisit existing techniques and combine them with new approaches to support a large portion of reachability queries in constant time using a linear-sized reachability index. Our new algorithm OReach can be easily combined with previously developed solutions for the problem or run standalone. In a detailed experimental study, we compare a variety of algorithms with respect to their index-building and query times as well as their memory footprint on a diverse set of instances. Our experiments indicate that the query performance often depends strongly not only on the type of graph, but also on the result, i.e., reachable or unreachable. Furthermore, we show that previous algorithms are significantly sped up when combined with our new approach in almost all scenarios. Surprisingly, due to cache effects, a higher investment in space doesnt necessarily pay off: Reachability queries can often be answered even faster than single memory accesses in a precomputed full reachability matrix.
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-disjoint (or node-disjoint) $u$-$v$ paths. This is a fundamental problem in combinatorial optimization that captures numerous well-studied problems in graph theory and graph algorithms. In this paper, we consider the version of the problem where we are given a $lambda$-edge connected (di)graph $G$ with a non-negative weight function $w$ on the edges and an integer $k$, and the objective is to find a minimum weight spanning subgraph $H$ that is also $lambda$-edge connected, and has at least $k$ fewer edges than $G$. In other words, we are asked to compute a maximum weight subset of edges, of cardinality up to $k$, which may be safely deleted from $G$. Motivated by this question, we investigate the connectivity properties of $lambda$-edge connected (di)graphs and obtain algorithmically significant structural results. We demonstrate the importance of our structural results by presenting an algorithm running in time $2^{O(k log k)} |V(G)|^{O(1)}$ for $lambda$-ECS, thus proving its fixed-parameter tractability. We follow up on this result and obtain the {em first polynomial compression} for $lambda$-ECS on unweighted graphs. As a consequence, we also obtain the first fixed parameter tractable algorithm, and a polynomial kernel for a parameterized version of the classic Mininum Equivalent Graph problem. We believe that our structural results are of independent interest and will play a crucial role in the design of algorithms for connectivity-constrained problems in general and the SNDP problem in particular.
We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that both problems are polynomial-time solvable for $sP_3$-free graphs for every integer $sgeq 1$. Our results show that both problems exhibit the same behaviour on $H$-free graphs (subject to some open cases). This is in part explained by a new general algorithm we design for finding in a graph $G$ a largest induced subgraph whose blocks belong to some finite class ${cal C}$ of graphs. We also compare our results with the state-of-the-art results for the Odd Cycle Transversal problem, which is known to behave differently on $H$-free graphs.
Finding the largest clique is a notoriously hard problem, even on random graphs. It is known that the clique number of a random graph G(n,1/2) is almost surely either k or k+1, where k = 2log n - 2log(log n) - 1. However, a simple greedy algorithm finds a clique of size only (1+o(1))log n, with high probability, and finding larger cliques -- that of size even (1+ epsilon)log n -- in randomized polynomial time has been a long-standing open problem. In this paper, we study the following generalization: given a random graph G(n,1/2), find the largest subgraph with edge density at least (1-delta). We show that a simple modification of the greedy algorithm finds a subset of 2log n vertices whose induced subgraph has edge density at least 0.951, with high probability. To complement this, we show that almost surely there is no subset of 2.784log n vertices whose induced subgraph has edge density 0.951 or more.
Structure properties of fifty five even-even actinides have been calculated using the Gogny D1S force and the Hartree-Fock-Bogoliubov approach as well as the configuration mixing method. Theoretical results are compared with experimental data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا