Do you want to publish a course? Click here

Machine Learned Huckel Theory: Interfacing Physics and Deep Neural Networks

60   0   0.0 ( 0 )
 Added by Ben Nebgen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Huckel Hamiltonian is an incredibly simple tight-binding model famed for its ability to capture qualitative physics phenomena arising from electron interactions in molecules and materials. Part of its simplicity arises from using only two types of empirically fit physics-motivated parameters: the first describes the orbital energies on each atom and the second describes electronic interactions and bonding between atoms. By replacing these traditionally static parameters with dynamically predicted values, we vastly increase the accuracy of the extended Huckel model. The dynamic values are generated with a deep neural network, which is trained to reproduce orbital energies and densities derived from density functional theory. The resulting model retains interpretability while the deep neural network parameterization is smooth, accurate, and reproduces insightful features of the original static parameterization. Finally, we demonstrate that the Huckel model, and not the deep neural network, is responsible for capturing intricate orbital interactions in two molecular case studies. Overall, this work shows the promise of utilizing machine learning to formulate simple, accurate, and dynamically parameterized physics models.

rate research

Read More

Our work intends to show that: (1) Quantum Neural Networks (QNN) can be mapped onto spinnetworks, with the consequence that the level of analysis of their operation can be carried out on the side of Topological Quantum Field Theories (TQFT); (2) Deep Neural Networks (DNN) are a subcase of QNN, in the sense that they emerge as the semiclassical limit of QNN; (3) A number of Machine Learning (ML) key-concepts can be rephrased by using the terminology of TQFT. Our framework provides as well a working hypothesis for understanding the generalization behavior of DNN, relating it to the topological features of the graphs structures involved.
We introduce an all-optical Diffractive Deep Neural Network (D2NN) architecture that can learn to implement various functions after deep learning-based design of passive diffractive layers that work collectively. We experimentally demonstrated the success of this framework by creating 3D-printed D2NNs that learned to implement handwritten digit classification and the function of an imaging lens at terahertz spectrum. With the existing plethora of 3D-printing and other lithographic fabrication methods as well as spatial-light-modulators, this all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can implement, and will find applications in all-optical image analysis, feature detection and object classification, also enabling new camera designs and optical components that can learn to perform unique tasks using D2NNs.
In this work, we characterize the performance of a deep convolutional neural network designed to detect and quantify chemical elements in experimental X-ray photoelectron spectroscopy data. Given the lack of a reliable database in literature, in order to train the neural network we computed a large ($>$100 k) dataset of synthetic spectra, based on randomly generated materials covered with a layer of adventitious carbon. The trained net performs as good as standard methods on a test set of $approx$ 500 well characterized experimental X-ray photoelectron spectra. Fine details about the net layout, the choice of the loss function and the quality assessment strategies are presented and discussed. Given the synthetic nature of the training set, this approach could be applied to the automatization of any photoelectron spectroscopy system, without the need of experimental reference spectra and with a low computational effort.
In this work, we address the question whether a sufficiently deep quantum neural network can approximate a target function as accurate as possible. We start with simple but typical physical situations that the target functions are physical observables, and then we extend our discussion to situations that the learning targets are not directly physical observables, but can be expressed as physical observables in an enlarged Hilbert space with multiple replicas, such as the Loshimidt echo and the Renyi entropy. The main finding is that an accurate approximation is possible only when the input wave functions in the dataset do not exhaust the entire Hilbert space that the quantum circuit acts on, and more precisely, the Hilbert space dimension of the former has to be less than half of the Hilbert space dimension of the latter. In some cases, this requirement can be satisfied automatically because of the intrinsic properties of the dataset, for instance, when the input wave function has to be symmetric between different replicas. And if this requirement cannot be satisfied by the dataset, we show that the expressivity capabilities can be restored by adding one ancillary qubit where the wave function is always fixed at input. Our studies point toward establishing a quantum neural network analogy of the universal approximation theorem that lays the foundation for expressivity of classical neural networks.
We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially-resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا