No Arabic abstract
The prevalence of digital sensors, such as digital cameras and mobile phones, simplifies the acquisition of photos. Digital sensors, however, suffer from producing Moire when photographing objects having complex textures, which deteriorates the quality of photos. Moire spreads across various frequency bands of images and is a dynamic texture with varying colors and shapes, which pose two main challenges in demoireing---an important task in image restoration. In this paper, towards addressing the first challenge, we design a multi-scale network to process images at different spatial resolutions, obtaining features in different frequency bands, and thus our method can jointly remove moire in different frequency bands. Towards solving the second challenge, we propose a dynamic feature encoding module (DFE), embedded in each scale, for dynamic texture. Moire pattern can be eliminated more effectively via DFE.Our proposed method, termed Multi-scale convolutional network with Dynamic feature encoding for image DeMoireing (MDDM), can outperform the state of the arts in fidelity as well as perceptual on benchmarks.
When smartphone cameras are used to take photos of digital screens, usually moire patterns result, severely degrading photo quality. In this paper, we design a wavelet-based dual-branch network (WDNet) with a spatial attention mechanism for image demoireing. Existing image restoration methods working in the RGB domain have difficulty in distinguishing moire patterns from true scene texture. Unlike these methods, our network removes moire patterns in the wavelet domain to separate the frequencies of moire patterns from the image content. The network combines dense convolution modules and dilated convolution modules supporting large receptive fields. Extensive experiments demonstrate the effectiveness of our method, and we further show that WDNet generalizes to removing moire artifacts on non-screen images. Although designed for image demoireing, WDNet has been applied to two other low-levelvision tasks, outperforming state-of-the-art image deraining and derain-drop methods on the Rain100h and Raindrop800 data sets, respectively.
Different from traditional image super-resolution task, real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image. Most of the traditional image SR obtains the LR sample by applying a fixed down-sampling operator. Real-SR obtains the LR and HR image pair by incorporating different quality optical sensors. Generally, Real-SR has more challenges as well as broader application scenarios. Previous image SR methods fail to exhibit similar performance on Real-SR as the image data is not aligned inherently. In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR, which addresses the cross-camera image mapping by realizing a dual-way dynamic sub-pixel weighted aggregation and refinement. Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair in image SR issue. First, we use a content-adaptive component to exhibit the Multi-scale Dynamic Attention(MDA). Second, we incorporate a long-term skip connection with a Coupled Detail Manipulation(CDM) to perform collaborative compensation and manipulation. The above dual-path model is joint into a unified model and works collaboratively. Extensive experiments on the challenging benchmarks demonstrate the superiority of our model.
In this paper, we propose to utilize Convolutional Neural Networks (CNNs) and the segmentation-based multi-scale analysis to locate tampered areas in digital images. First, to deal with color input sliding windows of different scales, a unified CNN architecture is designed. Then, we elaborately design the training procedures of CNNs on sampled training patches. With a set of robust multi-scale tampering detectors based on CNNs, complementary tampering possibility maps can be generated. Last but not least, a segmentation-based method is proposed to fuse the maps and generate the final decision map. By exploiting the benefits of both the small-scale and large-scale analyses, the segmentation-based multi-scale analysis can lead to a performance leap in forgery localization of CNNs. Numerous experiments are conducted to demonstrate the effectiveness and efficiency of our method.
Human action recognition is an active research area in computer vision. Although great process has been made, previous methods mostly recognize actions based on depth data at only one scale, and thus they often neglect multi-scale features that provide additional information action recognition in practical application scenarios. In this paper, we present a novel framework focusing on multi-scale motion information to recognize human actions from depth video sequences. We propose a multi-scale feature map called Laplacian pyramid depth motion images(LP-DMI). We employ depth motion images (DMI) as the templates to generate the multi-scale static representation of actions. Then, we caculate LP-DMI to enhance multi-scale dynamic information of motions and reduces redundant static information in human bodies. We further extract the multi-granularity descriptor called LP-DMI-HOG to provide more discriminative features. Finally, we utilize extreme learning machine (ELM) for action classification. The proposed method yeilds the recognition accuracy of 93.41%, 85.12%, 91.94% on public MSRAction3D dataset, UTD-MHAD and DHA dataset. Through extensive experiments, we prove that our method outperforms state-of-the-art benchmarks.
We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and more pertinent features as compared to those derived inputs produced by hand-selected pre-processing methods. The backbone module implements a novel attention-based multi-scale estimation on a grid network, which can effectively alleviate the bottleneck issue often encountered in the conventional multi-scale approach. The post-processing module helps to reduce the artifacts in the final output. Experimental results indicate that the GridDehazeNet outperforms the state-of-the-arts on both synthetic and real-world images. The proposed hazing method does not rely on the atmosphere scattering model, and we provide an explanation as to why it is not necessarily beneficial to take advantage of the dimension reduction offered by the atmosphere scattering model for image dehazing, even if only the dehazing results on synthetic images are concerned.