Do you want to publish a course? Click here

Tri- & Tetra-Hyperbolic Iso-frequncy Topologies Complete Classification of Bi-Anisotropic Materials

65   0   0.0 ( 0 )
 Added by Maxim Durach
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe novel topological phases of iso-frequency k-space surfaces in bi-anisotropic optical materials - tri- and tetra-hyperbolic materials, which are induced by introduction of chirality. This completes the classification of iso-frequency topologies for bi-anisotropic materials, since as we show all optical materials belong to one of the following topological classes: tetra-, tri-, bi-, mono- or non-hyperbolic. We show that phase transitions between these classes occur in the k-space directions with zero group velocity at high k-vectors. This classification is based on the sets of high-k polaritons (HKPs), supported by materials. We obtain the equation describing these sets and characterize the longitudinal polarization impedance of HKPs.



rate research

Read More

239 - Maxim Durach 2020
In this paper we reveal the physics behind the formation of tri- and tetra-hyperbolic phases in anisotropic metamaterials without magnetoelectric coupling and describe the anti-crossing splitting phenomenon in the hyperbolic dispersion which arises due to the hybridization of the plasmonic and magnetic Bloch high-k polaritons. This considerably deepens the understanding of the high-k polaritons and the topology of the optical iso-frequency surfaces in k-space and will find applications in optical nano-resolution imaging and emission rate and directivity control. To accomplish this, we develop a range of new techniques of theoretical optics for bianisotropic materials, including the quadratic index of refraction operator method, suitable to study the high-k polaritons with finite indices of refraction and the explicit expression for the characteristic matrix in generic bianisotropic media. We introduce the spatial stratification approach for the electric and magnetic responses of anisotropic homogeneous media to analyze the underlying Bloch waves. We believe that the formalisms developed here can be useful for the researchers in the field of theoretical optics of anisotropic and bianisotropic media in the future.
105 - Maxim Durach 2018
We propose a general and complete classification of all possible new and old kinds of surface plasmon waves that can propagate at boundaries of arbitrary linear, local bi-anisotropic media, including the quartic metamaterials. For arbitrary frequency, wavelength, propagation direction, penetration depths and fields of the proposed surface plasmon waves we found the dispersion condition and determined the 72-parametric class of media that support a particular surface plasmon. A member of each class is a pair of anisotropic materials without magnetoelectric couplings.
We theoretically demonstrate the fundamental limit in volume for given materials (e.g. Si, a-Si, CdTe) to fully absorb the solar radiation above bandgap, which we refer as solar superabsorption limit. We also point out the general principles for experimentally designing light trapping structures to approach the superabsorption. This study builds upon an intuitive model, coupled leaky mode theory (CLMT), for the analysis of light absorption in nanostructures. The CLMT provides a useful variable transformation. Unlike the existing methods that rely on information of physical features (e.g. morphology, dimensionality) to analyze light absorption, the CLMT can evaluate light absorption in given materials with only two variables, the radiative loss and the resonant wavelength, of leaky modes, regardless the physical features of the materials. This transformation allows for surveying the entire variable space to find out the solar superabsorption and provides physical insights to guide the design of solar superabsorbing structures.
The optical properties of some nanomaterials can be controlled by an external magnetic field, providing active functionalities for a wide range of applications, from single-molecule sensing to nanoscale nonreciprocal optical isolation. Materials with broadband tunable magneto-optical response are therefore highly desired for various components in next-generation integrated photonic nanodevices. Concurrently, hyperbolic metamaterials received a lot of attention in the past decade since they exhibit unusual properties that are rarely observed in nature and provide an ideal platform to control the optical response at the nanoscale via careful design of the effective permittivity tensor, surpassing the possibilities of conventional systems. Here, we experimentally study magnetic circular dichroism in a metasurface made of type-II hyperbolic nanoparticles on a transparent substrate. Numerical simulations confirm the experimental findings, and an analytical model is established to explain the physical origin of the observed magneto-optical effects, which can be described in terms of the coupling of fundamental electric and magnetic dipole modes with an external magnetic field. Our system paves the way for the development of nanophotonic active devices combining the benefits of sub-wavelength light manipulation in hyperbolic metamaterials supporting a large density of optical states with the ability to freely tune the magneto-optical response via control over the anisotropic permittivity of the system.
We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials into single photon beams. The approach rests on collective plasmonic Bloch modes of hyperbolic metamaterials which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the hyperbolic metamaterial that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth inspite of the losses in the metal. Our work should help motivate experiments in the development of single photon sources for broadband emitters such as nitrogen vacancy centers in diamond.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا