Do you want to publish a course? Click here

On the Whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models

81   0   0.0 ( 0 )
 Added by Nikolai Leonenko
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A continuous-time nonlinear regression model with Levy-driven linear noise process is considered. Sufficient conditions of consistency and asymptotic normality of the Whittle estimator for the parameter of the noise spectral density are obtained in the paper.



rate research

Read More

This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar (1987). The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Duembgen, Samworth and Schuhmacher (2011) on regression models with log-concave error distributions.
139 - Christian Houdre , Hua Xu 2007
We derive concentration inequalities for functions of the empirical measure of large random matrices with infinitely divisible entries and, in particular, stable ones. We also give concentration results for some other functionals of these random matrices, such as the largest eigenvalue or the largest singular value.
We derive consistent and asymptotically normal estimators for the drift and volatility parameters of the stochastic heat equation driven by an additive space-only white noise when the solution is sampled discretely in the physical domain. We consider both the full space and the bounded domain. We establish the exact spatial regularity of the solution, which in turn, using power-variation arguments, allows building the desired estimators. We show that naive approximations of the derivatives appearing in the power-variation based estimators may create nontrivial biases, which we compute explicitly. The proofs are rooted in Malliavin-Steins method.
63 - R. Carrizo Vergara 2021
We show that any (real) generalized stochastic process over $mathbb{R}^{d}$ can be expressed as a linear transformation of a White Noise process over $mathbb{R}^{d}$. The procedure is done by using the regularity theorem for tempered distributions to obtain a mean-square continuous stochastic process which is then expressed in a Karhunen-Lo`eve expansion with respect to a convenient Hilbert space. This result also allows to conclude that any generalized stochastic process can be expressed as a series expansion of deterministic tempered distributions weighted by uncorrelated random variables with square-summable variances. A result specifying when a generalized stochastic process can be linearly transformed into a White Noise is also presented.
We consider Gaussian measures $mu, tilde{mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2beta}$ resp. $tilde{A}^{-2tilde{beta}}$, and derive necessary and sufficient conditions on $A, tilde{A}$ and $beta, tilde{beta} > 0$ for I. equivalence of the measures $mu$ and $tilde{mu}$, and II. uniform asymptotic optimality of linear predictions for $mu$ based on the misspecified measure $tilde{mu}$. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special case, we consider the class of generalized Whittle-Matern Gaussian random fields, where $A$ and $tilde{A}$ are elliptic second-order differential operators, formulated on a bounded Euclidean domain $mathcal{D}subsetmathbb{R}^d$ and augmented with homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving consistency results for parameter estimation of generalized Whittle-Matern fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا