Do you want to publish a course? Click here

Concentration of the Spectral Measure for Large Random Matrices with Stable Entries

139   0   0.0 ( 0 )
 Added by Christian Houdre
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We derive concentration inequalities for functions of the empirical measure of large random matrices with infinitely divisible entries and, in particular, stable ones. We also give concentration results for some other functionals of these random matrices, such as the largest eigenvalue or the largest singular value.



rate research

Read More

We consider ensembles of real symmetric band matrices with entries drawn from an infinite sequence of exchangeable random variables, as far as the symmetry of the matrices permits. In general the entries of the upper triangular parts of these matrices are correlated and no smallness or sparseness of these correlations is assumed. It is shown that the eigenvalue distribution measures still converge to a semicircle but with random scaling. We also investigate the asymptotic behavior of the corresponding $ell_2$-operator norms. The key to our analysis is a generalisation of a classic result by de Finetti that allows to represent the underlying probability spaces as averages of Wigner band ensembles with entries that are not necessarily centred. Some of our results appear to be new even for such Wigner band matrices.
The topic of this paper is the typical behavior of the spectral measures of large random matrices drawn from several ensembles of interest, including in particular matrices drawn from Haar measure on the classical Lie groups, random compressions of random Hermitian matrices, and the so-called random sum of two independent random matrices. In each case, we estimate the expected Wasserstein distance from the empirical spectral measure to a deterministic reference measure, and prove a concentration result for that distance. As a consequence we obtain almost sure convergence of the empirical spectral measures in all cases.
We study the singularity probability of random integer matrices. Concretely, the probability that a random $n times n$ matrix, with integer entries chosen uniformly from ${-m,ldots,m}$, is singular. This problem has been well studied in two regimes: large $n$ and constant $m$; or large $m$ and constant $n$. In this paper, we extend previous techniques to handle the regime where both $n,m$ are large. We show that the probability that such a matrix is singular is $m^{-cn}$ for some absolute constant $c>0$. We also provide some connections of our result to coding theory.
A continuous-time nonlinear regression model with Levy-driven linear noise process is considered. Sufficient conditions of consistency and asymptotic normality of the Whittle estimator for the parameter of the noise spectral density are obtained in the paper.
A classical result for the simple symmetric random walk with $2n$ steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows($q$) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step $2n$ for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Steins method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows$(q)$ permutation which is of independent interest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا