Do you want to publish a course? Click here

New data on $vec{gamma} vec{p}rightarrow eta p$ with polarized photons and protons and their implications for $N^* to Neta$ decays

71   0   0.0 ( 0 )
 Added by Ulrike Thoma
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The polarization observables $T, E, P, H$, and $G$ in photoproduction of $eta$ mesons off protons are measured for photon energies from threshold to $W=2400,$MeV ($T$), 2280 MeV ($E$), 1620 MeV ($P, H$), or 1820 MeV ($G$), covering nearly the full solid angle. The data are compared to predictions from the SAID, MAID, JuBo, and BnGa partial-wave analyses. A refit within the BnGa approach including further data yields precise branching ratios for the $Neta$ decay of nucleon resonances. A $Neta$-branching ratio of $0.33pm 0.04$ for $N(1650)1/2^-$ is found, which reduces the large and controversially discussed $Neta$-branching ratio difference of the two lowest mass $J^P=1/2^-$-resonances significantly.



rate research

Read More

72 - D. Ho , P. Peng , C. Bass 2017
We report the first beam-target double-polarization asymmetries in the $gamma + n(p) rightarrow pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {it{E}} polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses, and have led to significant revisions for several $gamma nN^*$ resonance photo-couplings.
The effects of multi-photon-exchange and other higher-order QED corrections on elastic electron-proton scattering have been a subject of high experimental and theoretical interest since the polarization transfer measurements of the proton electromagnetic form factor ratio $G_E^p/G_M^p$ at large momentum transfer $Q^2$ conclusively established the strong decrease of this ratio with $Q^2$ for $Q^2 gtrsim 1$ GeV$^2$. This result is incompatible with previous extractions of this quantity from cross section measurements using the Rosenbluth Separation technique. Much experimental attention has been focused on extracting the two-photon exchange (TPE) effect through the unpolarized $e^+p/e^-p$ cross section ratio, but polarization transfer in polarized elastic scattering can also reveal evidence of hard two-photon exchange. Furthermore, it has a different sensitivity to the generalized TPE form factors, meaning that measurements provide new information that cannot be gleaned from unpolarized scattering alone. Both $epsilon$-dependence of polarization transfer at fixed $Q^2$, and deviations between electron-proton and positron-proton scattering are key signatures of hard TPE. A polarized positron beam at Jefferson Lab would present a unique opportunity to make the first measurement of positron polarization transfer, and comparison with electron-scattering data would place valuable constraints on hard TPE. Here, we propose a measurement program in Hall A that combines the Super BigBite Spectrometer for measuring recoil proton polarization, with a non-magnetic calorimetric detector for triggering on elastically scattered positrons. Though the reduced beam current of the positron beam will restrict the kinematic reach, this measurement will have very small systematic uncertainties, making it a clean probe of TPE.
118 - B. C. Hunt , D. M. Manley 2018
This paper presents results from partial-wave analyses of the photoproduction reactions $gamma p rightarrow eta p$ and $gamma n rightarrow eta n$. World data for the observables DSG, $Sigma$, $T$, $P$, $F$, and $E$ were analyzed as part of this work. The dominant amplitude in the fitting range from threshold to a c.m. energy of 1900 MeV was found to be $S_{11}$ in both reactions, consistent with results of other groups. At c.m. energies above 1600 MeV, our solution deviates from published results, with this work finding higher-order partial waves becoming significant. Data off the proton suggest that the higher-order terms contributing to the reaction include $P_{11}$, $P_{13}$, and $F_{15}$. The final results also hint that $F_{17}$ is needed to fit double-polarization observables above 1900 MeV. Data off the neutron show a contribution from $P_{13}$, as well as strong contributions from $D_{13}$ and $D_{15}$.
A first measurement of longitudinal as well as transverse spin correlation coefficients for the reaction $vec{p}vec{p}to pnpi^+$ was made using a polarized proton target and a polarized proton beam. We report kinematically complete measurements for this reaction at 325, 350, 375 and 400 MeV beam energy. The spin correlation coefficients $A_{xx}+A_{yy}, A_{xx}-A_{yy}, A_{zz}, A_{xz},$ and the analyzing power $A_{y},$ as well as angular distributions for $sigma(theta_{pi})$ and the polarization observables $A_{ij}(theta_{pi})$ were extracted. Partial wave cross sections for dominant transition channels were obtained from a partial wave analysis that included the transitions with final state angular momenta of $lleq 1$. The measurements of the ${vec{p}vec{p}to pnpi^{+}}$ polarization observables are compared with the predictions from the Julich meson exchange model. The agreement is very good at 325 MeV, but it deteriorates increasingly for the higher energies. At all energies agreement with the model is better than for the reaction ${vec{p}vec{p}to pppi^{0}}$.
102 - T. Kolar , S. Paul , T. Brecelj 2020
We present first measurements of the double ratio of the polarization transfer components $(P^{prime}_{!x} !/ P^{prime}_{!z} )_p/ (P^{prime}_{!x} !/ P^{prime}_{!z} )_s$ for knock-out protons from $s$ and $p$ shells in $^{12}{rm C}$ measured by the $^{12}{rm C}(vec{e},{e}vec{p},)$ reaction in quasi-elastic kinematics. The data are compared to theoretical predictions in relativistic distorted-wave impulse approximation. Our results show that differences between $s$- and $p$-shell protons, observed when compared at the same initial momentum (missing momentum) largely disappear when the comparison is done at the same proton virtuality. We observe no density-dependent medium modifications for protons from $s$ and $p$ shells with the same virtuality in spite of the large differences in the respective nuclear densities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا