We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary tetrahedral coupling constant, while one of them is not real in the case of a real coupling. We also discuss the operator spectrum of the free theory based on the character decomposition of the partition function.
We study $mathcal{N} = 3$ supersymmetric Chern-Simons-matter theory coupled to matter in the fundamental representation of $SU(N)$. In the t Hooft large $N$ limit, we compute the exact $2 to 2$ scattering amplitudes of the fundamental scalar superfields to all orders in the t Hooft coupling $lambda$. Our computations are presented in $mathcal{N} = 1$ superspace and make significant use of the residual $SO(2)_R$ symmetry in order to solve for the exact four-point correlator of the scalar superfields. By taking the on-shell limit, we are able to extract the exact $2 to 2$ scattering amplitudes of bosons/fermions in the symmetric, anti-symmetric and adjoint channels of scattering. We find that the scattering amplitude of the $mathcal{N} = 3$ theory in the planar limit is tree-level exact to all orders in the t Hooft coupling $lambda$. The result is consistent with the conjectured bosonization duality and is expected to have enhanced symmetry structures such as dual superconformal symmetry and Yangian symmetry.
We continue the study of the bosonic $O(N)^3$ model with quartic interactions and long-range propagator. The symmetry group allows for three distinct invariant $phi^4$ composite operators, known as tetrahedron, pillow and double-trace. As shown in arXiv:1903.03578 and arXiv:1909.07767, the tetrahedron operator is exactly marginal in the large-$N$ limit and for a purely imaginary tetrahedron coupling a line of real infrared fixed points (parametrized by the absolute value of the tetrahedron coupling) is found for the other two couplings. These fixed points have real critical exponents and a real spectrum of bilinear operators, satisfying unitarity constraints. This raises the question whether at large-$N$ the model is unitary, despite the tetrahedron coupling being imaginary. In this paper, we first rederive the above results by a different regularization and renormalization scheme. We then discuss the operator mixing for composite operators and we give a perturbative proof of conformal invariance of the model at the infrared fixed points by adapting a similar proof from the long-range Ising model. At last, we identify the scaling operators at the fixed point and compute the two- and three-point functions of $phi^4$ and $phi^2$ composite operators. The correlations have the expected conformal behavior and the OPE coefficients are all real, reinforcing the claim that the large-$N$ CFT is unitary.
We study the double scaling limit of the $O(N)^3$-invariant tensor model, initially introduced in Carrozza and Tanasa, Lett. Math. Phys. (2016). This model has an interacting part containing two types of quartic invariants, the tetrahedric and the pillow one. For the 2-point function, we rewrite the sum over Feynman graphs at each order in the $1/N$ expansion as a emph{finite} sum, where the summand is a function of the generating series of melons and chains (a.k.a. ladders). The graphs which are the most singular in the continuum limit are characterized at each order in the $1/N$ expansion. This leads to a double scaling limit which picks up contributions from all orders in the $1/N$ expansion. In contrast with matrix models, but similarly to previous double scaling limits in tensor models, this double scaling limit is summable. The tools used in order to prove our results are combinatorial, namely a thorough diagrammatic analysis of Feynman graphs, as well as an analysis of the singularities of the relevant generating series.
Various tensor models have been recently shown to have the same properties as the celebrated Sachdev-Ye-Kitaev (SYK) model. In this paper we study in detail the diagrammatics of two such SYK-like tensor models: the multi-orientable (MO) model which has an $U(N) times O(N) times U(N)$ symmetry and a quartic $O(N)^3$-invariant model whose interaction has the tetrahedral pattern. We show that the Feynman graphs of the MO model can be seen as the Feynman graphs of the $O(N)^3$-invariant model which have an orientable jacket. We then present a diagrammatic toolbox to analyze the $O(N)^3$-invariant graphs. This toolbox allows for a simple strategy to identify all the graphs of a given order in the $1/N$ expansion. We apply it to the next-to-next-to-leading and next-to-next-to-next-to-leading orders which are the graphs of degree $1$ and $3/2$ respectively.
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(phi^*phi)^2$ theory may be computed semi-classically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$ and this was verified to two loop order in perturbation theory at leading and sub-leading $n$. In subsequent work, this result was generalised to operators of fixed charge $Q$ in $O(N)$ theory and verified up to three loops in perturbation theory at leading and sub-leading order. Here we extend this verification to four loops in $O(N)$ theory, once again at leading and sub-leading order. We also investigate the strong-coupling regime.