Do you want to publish a course? Click here

Scattering Amplitudes in $mathcal{N} = 3$ Supersymmetric $SU(N)$ Chern-Simons-Matter Theory at Large $N$

189   0   0.0 ( 0 )
 Added by Ashish Shukla
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study $mathcal{N} = 3$ supersymmetric Chern-Simons-matter theory coupled to matter in the fundamental representation of $SU(N)$. In the t Hooft large $N$ limit, we compute the exact $2 to 2$ scattering amplitudes of the fundamental scalar superfields to all orders in the t Hooft coupling $lambda$. Our computations are presented in $mathcal{N} = 1$ superspace and make significant use of the residual $SO(2)_R$ symmetry in order to solve for the exact four-point correlator of the scalar superfields. By taking the on-shell limit, we are able to extract the exact $2 to 2$ scattering amplitudes of bosons/fermions in the symmetric, anti-symmetric and adjoint channels of scattering. We find that the scattering amplitude of the $mathcal{N} = 3$ theory in the planar limit is tree-level exact to all orders in the t Hooft coupling $lambda$. The result is consistent with the conjectured bosonization duality and is expected to have enhanced symmetry structures such as dual superconformal symmetry and Yangian symmetry.



rate research

Read More

The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
We compute the two, three point function of the opearators in the spin zero multiplet of ${cal N}=2$ Supersymmetric vector matter Chern-Simons theory at large $N$ and at all orders of t Hooft coupling by solving the Schwinger-Dyson equation. Schwinger-Dyson method to compute four point function becomes extremely complicated and hence we use bootstrap method to solve for four point function of scaler operator $J_0^{f}=barpsi psi$ and $J_0^{b}=barphi phi$. Interestingly, due to the fact that $langle J_0^{f}J_0^{f}J_0^{b} rangle$ is a contact term, the four point function of $ J_0^{f}$ operator looks like that of free theory up to overall coupling constant dependent factors and up to some bulk AdS contact terms. On the other hand the $J_0^{b}$ four-point function receives an additional contribution compared to the free theory expression due to the $J_0^{f}$ exchange. Interestingly, double discontinuity of this single trace operator $J_0^{f}$ vanishes and hence it only contributes to AdS-contact term.
We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary tetrahedral coupling constant, while one of them is not real in the case of a real coupling. We also discuss the operator spectrum of the free theory based on the character decomposition of the partition function.
We study the theory of a single fundamental fermion and boson coupled to Chern-Simons theory at leading order in the large $N$ limit. Utilizing recent progress in understanding the Higgsed phase in Chern-Simons-Matter theories, we compute the quantum effective potential that is exact to all orders in the t Hooft coupling for the lightest scalar operator of this theory at finite temperature. Specializing to the zero temperature limit we use this potential to determine the phase diagram of the large $N$ ${cal N}=2$ supersymmetric theory with this field content. This intricate two dimensional phase diagram has four topological phases that are separated by lines of first and second order phase transitions and includes special conformal points at which the infrared dynamics is governed by Chern-Simons theory coupled respectively to free bosons, Gross-Neveu fermions, and to a theory of Wilson-Fisher bosons plus free fermions. We also describe the vacuum structure of the most general ${cal N} = 1$ supersymmetric theory with one fundamental boson and one fundamental fermion coupled to an $SU(N)$ Chern-Simons gauge field, at arbitrary values of the t Hooft coupling.
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although the string tension is generically of a square-root form, it turns out that all existing BPS (Bogomolnyi-Prasad-Sommerfield) solutions have a tension which is linear in the magnetic fluxes, which in turn are linearly related to the winding numbers. The main result is a series of theorems establishing three different kinds of solutions of the so-called constraint equations, which can be pictured as orthogonal directions to the magnetic flux in ${rm SU}(2)_R$ space. We further prove for all cases, that a seemingly vanishing Bogomolnyi bound cannot have solutions. Finally, we write down the most general vortex equations in both master form and Taubes-like form. Remarkably, the final vortex equations essentially look Abelian in the sense that there is no trace of the ${rm SU}(2)_R$ symmetry in the equations, after the constraint equations have been solved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا