Do you want to publish a course? Click here

The O(N) S-matrix Monolith

126   0   0.0 ( 0 )
 Added by Yifei He
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider the scattering matrices of massive quantum field theories with no bound states and a global $O(N)$ symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass $m$ transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and $O(N)$ symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space.



rate research

Read More

Three related analyses of $phi^4$ theory with $O(N)$ symmetry are presented. In the first, we review the $O(N)$ model over the $p$-adic numbers and the discrete renormalization group transformations which can be understood as spin blocking in an ultrametric context. We demonstrate the existence of a Wilson-Fisher fixed point using an $epsilon$ expansion, and we show how to obtain leading order results for the anomalous dimensions of low dimension operators near the fixed point. Along the way, we note an important aspect of ultrametric field theories, which is a non-renormalization theorem for kinetic terms. In the second analysis, we employ large $N$ methods to establish formulas for anomalous dimensions which are valid equally for field theories over the $p$-adic numbers and field theories on $mathbb{R}^n$. Results for anomalous dimensions agree between the first and second analyses when they can be meaningfully compared. In the third analysis, we consider higher derivativ
In the past year, in arXiv:1208.6066 we proposed a revisited S-matrix approach to efficiently find the bosonic terms of the open superstring low energy effective lagrangian (OSLEEL). This approach allows to compute the ${alpha}^N$ terms of the OSLEEL using open superstring $n$-point amplitudes in which $n$ is very much lower than $(N+2)$ (which is the order of the required amplitude to obtain those ${alpha}^N$ terms by means of the conventional S-matrix approach). In this work we use our revisited S-matrix approach to examine the structure of the scattering amplitudes, arriving at a closed form for them. This is a RNS derivation of the formula first found by Mafra, Schlotterer and Stieberger in arXiv:1106.2645, using the Pure Spinor formalism. We have succeeded doing this for the 5, 6 and 7-point amplitudes. In order to achieve these results we have done a careful analysis of the kinematical structure of the amplitudes, finding as a by-product a purely kinematical derivation of the BCJ relations (for N=4, 5, 6 and 7). Also, following the spirit of the revisited S-matrix approach, we have found the $alpha$ expansions for these amplitudes up to ${alpha}^6$ order in some cases, by only using the well known open superstring 4-point amplitude, cyclic symmetry and tree level unitarity: we have not needed to compute any numerical series or any integral involving polylogarithms, at any moment.
N=4 Poincare supergravity has a global SU(1,1) duality symmetry that acts manifestly only on shell as it involves duality rotations of vector fields. A U(1) subgroup of this symmetry is known to be anomalous at the quantum level in the presence of a non-trivial gravitational background. We first derive this anomaly from a novel perspective, by relating it to a similar anomaly in conformal supergravity where SU(1,1) acts off shell, using the fact that N=4 Poincare supergravity has a superconformal formulation. We explicitly construct the corresponding local and nonlocal anomalous terms in the one-loop effective action. We then study how this anomaly is reflected in the supergravity S-matrix. Calculating one-loop N=4 supergravity scattering amplitudes (with and without additional matter multiplets) using color/kinematics duality and the double-copy construction we find that a particular U(1) symmetry which was present in the tree-level amplitudes is broken at the quantum level. This breaking manifests itself in the appearance of new one-loop N=4 supergravity amplitudes that have non-vanishing soft-scalar limits (these amplitudes are absent in N>4 supergravities). We discuss the relation between these symmetry-violating amplitudes and the corresponding U(1) anomalous term in the one-loop supergravity effective action.
We determine, for the first time, the scaling dimensions of a family of fixed-charge operators stemming from the critical $O(N)$ model in 4-$epsilon$ dimensions to the leading and next to leading order terms in the charge expansion but to all-orders in the coupling. We test our results to the maximum known order in perturbation theory while determining higher order terms.
We analyze the pentagon transitions involving arbitrarily many flux-tube gluonic excitations and bound states thereof in planar N=4 Super-Yang-Mills theory. We derive all-loop expressions for all these transitions by factorization and fusion of the elementary transitions for the lightest gluonic excitations conjectured in a previous paper. We apply the proposals so obtained to the computation of MHV and NMHV scattering amplitudes at any loop order and find perfect agreement with available perturbative data up to four loops.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا