Do you want to publish a course? Click here

SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation

70   0   0.0 ( 0 )
 Added by Ken C. L. Wong
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep learning has largely reduced the need for manual feature selection in image segmentation. Nevertheless, network architecture optimization and hyperparameter tuning are mostly manual and time consuming. Although there are increasing research efforts on network architecture search in computer vision, most works concentrate on image classification but not segmentation, and there are very limited efforts on medical image segmentation especially in 3D. To remedy this, here we propose a framework, SegNAS3D, for network architecture search of 3D image segmentation. In this framework, a network architecture comprises interconnected building blocks that consist of operations such as convolution and skip connection. By representing the block structure as a learnable directed acyclic graph, hyperparameters such as the number of feature channels and the option of using deep supervision can be learned together through derivative-free global optimization. Experiments on 43 3D brain magnetic resonance images with 19 structures achieved an average Dice coefficient of 82%. Each architecture search required less than three days on three GPUs and produced architectures that were much smaller than the state-of-the-art manually created architectures.

rate research

Read More

Deep learning algorithms, in particular 2D and 3D fully convolutional neural networks (FCNs), have rapidly become the mainstream methodology for volumetric medical image segmentation. However, 2D convolutions cannot fully leverage the rich spatial information along the third axis, while 3D convolutions suffer from the demanding computation and high GPU memory consumption. In this paper, we propose to automatically search the network architecture tailoring to volumetric medical image segmentation problem. Concretely, we formulate the structure learning as differentiable neural architecture search, and let the network itself choose between 2D, 3D or Pseudo-3D (P3D) convolutions at each layer. We evaluate our method on 3 public datasets, i.e., the NIH Pancreas dataset, the Lung and Pancreas dataset from the Medical Segmentation Decathlon (MSD) Challenge. Our method, named V-NAS, consistently outperforms other state-of-the-arts on the segmentation task of both normal organ (NIH Pancreas) and abnormal organs (MSD Lung tumors and MSD Pancreas tumors), which shows the power of chosen architecture. Moreover, the searched architecture on one dataset can be well generalized to other datasets, which demonstrates the robustness and practical use of our proposed method.
The existing segmentation techniques require high-fidelity images as input to perform semantic segmentation. Since the segmentation results contain most of edge information that is much less than the acquired images, the throughput gap leads to both hardware and software waste. In this letter, we report an image-free single-pixel segmentation technique. The technique combines structured illumination and single-pixel detection together, to efficiently samples and multiplexes scenes segmentation information into compressed one-dimensional measurements. The illumination patterns are optimized together with the subsequent reconstruction neural network, which directly infers segmentation maps from the single-pixel measurements. The end-to-end encoding-and-decoding learning framework enables optimized illumination with corresponding network, which provides both high acquisition and segmentation efficiency. Both simulation and experimental results validate that accurate segmentation can be achieved using two-order-of-magnitude less input data. When the sampling ratio is 1%, the Dice coefficient reaches above 80% and the pixel accuracy reaches above 96%. We envision that this image-free segmentation technique can be widely applied in various resource-limited platforms such as UAV and unmanned vehicle that require real-time sensing.
Compression is a standard procedure for making convolutional neural networks (CNNs) adhere to some specific computing resource constraints. However, searching for a compressed architecture typically involves a series of time-consuming training/validation experiments to determine a good compromise between network size and performance accuracy. To address this, we propose an image complexity-guided network compression technique for biomedical image segmentation. Given any resource constraints, our framework utilizes data complexity and network architecture to quickly estimate a compressed model which does not require network training. Specifically, we map the dataset complexity to the target network accuracy degradation caused by compression. Such mapping enables us to predict the final accuracy for different network sizes, based on the computed dataset complexity. Thus, one may choose a solution that meets both the network size and segmentation accuracy requirements. Finally, the mapping is used to determine the convolutional layer-wise multiplicative factor for generating a compressed network. We conduct experiments using 5 datasets, employing 3 commonly-used CNN architectures for biomedical image segmentation as representative networks. Our proposed framework is shown to be effective for generating compressed segmentation networks, retaining up to $approx 95%$ of the full-sized network segmentation accuracy, and at the same time, utilizing $approx 32x$ fewer network trainable weights (average reduction) of the full-sized networks.
Learning structural information is critical for producing an ideal result in retinal image segmentation. Recently, convolutional neural networks have shown a powerful ability to extract effective representations. However, convolutional and pooling operations filter out some useful structural information. In this paper, we propose an Attention Guided Network (AG-Net) to preserve the structural information and guide the expanding operation. In our AG-Net, the guided filter is exploited as a structure sensitive expanding path to transfer structural information from previous feature maps, and an attention block is introduced to exclude the noise and reduce the negative influence of background further. The extensive experiments on two retinal image segmentation tasks (i.e., blood vessel segmentation, optic disc and cup segmentation) demonstrate the effectiveness of our proposed method.
Medical image segmentation has significantly benefitted thanks to deep learning architectures. Furthermore, semi-supervised learning (SSL) has recently been a growing trend for improving a models overall performance by leveraging abundant unlabeled data. Moreover, learning multiple tasks within the same model further improves model generalizability. To generate smoother and accurate segmentation masks from 3D cardiac MR images, we present a Multi-task Cross-task learning consistency approach to enforce the correlation between the pixel-level (segmentation) and the geometric-level (distance map) tasks. Our extensive experimentation with varied quantities of labeled data in the training sets justifies the effectiveness of our model for the segmentation of the left atrial cavity from Gadolinium-enhanced magnetic resonance (GE-MR) images. With the incorporation of uncertainty estimates to detect failures in the segmentation masks generated by CNNs, our study further showcases the potential of our model to flag low-quality segmentation from a given model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا