Do you want to publish a course? Click here

DC Electric Fields in Electrode-Free Glass Vapor Cell by Photoillumination

155   0   0.0 ( 0 )
 Added by Lu Ma
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rydberg-atom-enabled atomic vapor cell technologies show great potentials in developing devices for quantum enhanced sensors. In this paper, we demonstrate laser induced DC electric fields in an all-glass vapor cell without bulk or thin film electrodes. The spatial field distribution is mapped by Rydberg electromagnetically induced transparency spectroscopy. We explain the measured with a boundary-value electrostatic model. This work may inspire new ideas for DC electric field control in designing miniaturized atomic vapor cell devices. Limitations and other charge effects are also discussed.



rate research

Read More

We investigate the effects of static electric and magnetic fields on the differential ac Stark shifts for microwave transitions in ultracold bosonic $^{87}$Rb$^{133}$Cs molecules, for light of wavelength $lambda = 1064~mathrm{nm}$. Near this wavelength we observe unexpected two-photon transitions that may cause trap loss. We measure the ac Stark effect in external magnetic and electric fields, using microwave spectroscopy of the first rotational transition. We quantify the isotropic and anisotropic parts of the molecular polarizability at this wavelength. We demonstrate that a modest electric field can decouple the nuclear spins from the rotational angular momentum, greatly simplifying the ac Stark effect. We use this simplification to control the ac Stark shift using the polarization angle of the trapping laser.
The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.
We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high resolution microwave imaging system, this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.
The observation of strongly interacting many-body phenomena in atomic gases typically requires ultracold samples. Here we show that the strong interaction potentials between Rydberg atoms enable the observation of many-body effects in an atomic vapor, even at room temperature. We excite Rydberg atoms in cesium vapor and observe in real-time an out-of-equilibrium excitation dynamics that is consistent with an aggregation mechanism. The experimental observations show qualitative and quantitative agreement with a microscopic theoretical model. Numerical simulations reveal that the strongly correlated growth of the emerging aggregates is reminiscent of soft-matter type systems.
We describe a simple strontium vapor cell for laser spectroscopy experiments. Strontium vapor is produced using an electrically heated commercial dispenser source. The sealed cell operates at room temperature, and without a buffer gas or vacuum pump. The cell was characterised using laser spectroscopy, and was found to offer stable and robust operation, with an estimated lifetime of >10,000 hours. By changing the dispenser, this technique can be readily extended to other alkali and alkaline earth elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا