Do you want to publish a course? Click here

Controlling the ac Stark effect of RbCs with dc electric and magnetic fields

124   0   0.0 ( 0 )
 Added by Jacob Blackmore
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the effects of static electric and magnetic fields on the differential ac Stark shifts for microwave transitions in ultracold bosonic $^{87}$Rb$^{133}$Cs molecules, for light of wavelength $lambda = 1064~mathrm{nm}$. Near this wavelength we observe unexpected two-photon transitions that may cause trap loss. We measure the ac Stark effect in external magnetic and electric fields, using microwave spectroscopy of the first rotational transition. We quantify the isotropic and anisotropic parts of the molecular polarizability at this wavelength. We demonstrate that a modest electric field can decouple the nuclear spins from the rotational angular momentum, greatly simplifying the ac Stark effect. We use this simplification to control the ac Stark shift using the polarization angle of the trapping laser.



rate research

Read More

We investigate the effect of far-off-resonant trapping light on ultracold bosonic RbCs molecules. We use kHz-precision microwave spectroscopy to measure the differential AC Stark shifts between the ground and first excited rotational levels of the molecule with hyperfine-state resolution. We demonstrate through both experiment and theory that coupling between neighboring hyperfine states manifests in rich structure with many avoided crossings. This coupling may be tuned by rotating the polarization of the linearly polarized trapping light. A combination of spectroscopic and parametric heating measurements allows complete characterization of the molecular polarizability at a wavelength of 1550~nm in both the ground and first excited rotational states.
High-precision magnetic field measurement is an ubiquitous issue in physics and a critical task in metrology. Generally, magnetic field has DC and AC components and it is hard to extract both DC and AC components simultaneously. The conventional Ramsey interferometry can easily measure DC magnetic fields, while it becomes invalid for AC magnetic fields since the accumulated phases may average to zero. Here, we propose a scheme for simultaneous measurement of DC and AC magnetic fields by combining Ramsey interferometry and rapid periodic pulses. In our scheme, the interrogation stage is divided into two signal accumulation processes linked by a unitary operation. In the first process, only DC component contributes to the accumulated phase. In the second process, by applying multiple rapid periodic $pi$ pulses, only the AC component gives rise to the accumulated phase. By selecting suitable input state and the unitary operations in interrogation and readout stages, and the DC and AC components can be extracted by population measurements. In particular, if the input state is a GHZ state and two interaction-based operations are applied during the interferometry, the measurement precisions of DC and AC magnetic fields can approach the Heisenberg limit simultaneously. Our scheme provides a feasible way to achieve Heisenberg-limited simultaneous measurement of DC and AC fields.
Understanding ultracold collisions involving molecules is of fundamental importance for current experiments, where inelastic collisions typically limit the lifetime of molecular ensembles in optical traps. Here we present a broad study of optically trapped ultracold RbCs molecules in collisions with one another, in reactive collisions with Rb atoms, and in nonreactive collisions with Cs atoms. For experiments with RbCs alone, we show that by modulating the intensity of the optical trap, such that the molecules spend 75% of each modulation cycle in the dark, we partially suppress collisional loss of the molecules. This is evidence for optical excitation of molecule pairs mediated via sticky collisions. We find that the suppression is less effective for molecules not prepared in the spin-stretched hyperfine ground state. This may be due either to longer lifetimes for complexes or to laser-free decay pathways. For atom-molecule mixtures, RbCs+Rb and RbCs+Cs, we demonstrate that the rate of collisional loss of molecules scales linearly with the density of atoms. This indicates that, in both cases, the loss of molecules is rate-limited by two-body atom-molecule processes. For both mixtures, we measure loss rates that are below the thermally averaged universal limit.
176 - A.N. Petrov 2015
A method and code for calculations of diatomic molecules in the external variable electromagnetic field have been developed. Code applied for calculation of systematics in the electrons electric dipole moment search experiment on ThO $H^3Delta_1$ state related to geometric phases, including dependence on $Omega$-doublet, rotational level, and external static electric field. It is found that systematics decrease cubically with respect to the frequency of the rotating transverse component of the electric field. Calculation confirms that experiment on ThO $H^3Delta_1$ state is very robust against systematic errors related to geometric phases.
We demonstrate the effectiveness of a guided-wave Bose-Einstein condensate interferometer for practical measurements. Taking advantage of the large arm separations obtainable in our interferometer, the energy levels of the 87Rb atoms in one arm of the interferometer are shifted by a calibrated laser beam. The resulting phase shifts are used to determine the ac polarizability at a range of frequencies near and at the atomic resonance. The measured values are in good agreement with theoretical expectations. However, we observe a broadening of the transition near the resonance, an indication of collective light scattering effects. This nonlinearity may prove useful for the production and control of squeezed quantum states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا