No Arabic abstract
In this paper we propose a new multiple criteria decision aiding method to deal with sorting problems in which alternatives are evaluated on criteria structured in a hierarchical way and presenting interactions. The underlying preference model of the proposed method is the Choquet integral, while the hierarchical structure of the criteria is taken into account by applying the Multiple Criteria Hierarchy Process. Considering the Choquet integral based on a 2-additive capacity, the paper presents a procedure to find all the minimal sets of pairs of interacting criteria representing the preference information provided by the Decision Maker (DM). Robustness concerns are also taken into account by applying the Robust Ordinal Regression and the Stochastic Multicriteria Acceptability Analysis. Even if in different ways, both of them provide recommendations on the hierarchical sorting problem at hand by exploring the whole set of capacities compatible with the preferences provided by the DM avoiding to take into account only one of them. The applicability of the considered method to real world problems is demonstrated by means of an example regarding rating of European Countries by considering economic and financial data provided by Standard & Poors Global Inc.
We study the question of how concepts that have structure get represented in the brain. Specifically, we introduce a model for hierarchically structured concepts and we show how a biologically plausible neural network can recognize these concepts, and how it can learn them in the first place. Our main goal is to introduce a general framework for these tasks and prove formally how both (recognition and learning) can be achieved. We show that both tasks can be accomplished even in presence of noise. For learning, we analyze Ojas rule formally, a well-known biologically-plausible rule for adjusting the weights of synapses. We complement the learning results with lower bounds asserting that, in order to recognize concepts of a certain hierarchical depth, neural networks must have a corresponding number of layers.
The stochastic Frank-Wolfe method has recently attracted much general interest in the context of optimization for statistical and machine learning due to its ability to work with a more general feasible region. However, there has been a complexity gap in the guaranteed convergence rate for stochastic Frank-Wolfe compared to its deterministic counterpart. In this work, we present a new generalized stochastic Frank-Wolfe method which closes this gap for the class of structured optimization problems encountered in statistical and machine learning characterized by empirical loss minimization with a certain type of ``linear prediction property (formally defined in the paper), which is typically present loss minimization problems in practice. Our method also introduces the notion of a ``substitute gradient that is a not-necessarily-unbiased sample of the gradient. We show that our new method is equivalent to a particular randomized coordinate mirror descent algorithm applied to the dual problem, which in turn provides a new interpretation of randomized dual coordinate descent in the primal space. Also, in the special case of a strongly convex regularizer our generalized stochastic Frank-Wolfe method (as well as the randomized dual coordinate descent method) exhibits linear convergence. Furthermore, we present computational experiments that indicate that our method outperforms other stochastic Frank-Wolfe methods consistent with the theory developed herein.
The Chemical Master Equation (CME) is well known to provide the highest resolution models of a biochemical reaction network. Unfortunately, even simulating the CME can be a challenging task. For this reason more simple approximations to the CME have been proposed. In this work we focus on one such model, the Linear Noise Approximation. Specifically, we consider implications of a recently proposed LNA time-scale separation method. We show that the reduced order LNA converges to the full order model in the mean square sense. Using this as motivation we derive a network structure preserving reduction algorithm based on structured projections. We present convex optimisation algorithms that describe how such projections can be computed and we discuss when structured solutions exits. We also show that for a certain class of systems, structured projections can be found using basic linear algebra and no optimisation is necessary. The algorithms are then applied to a linearised stochastic LNA model of the yeast glycolysis pathway.
Stochastic network design is a general framework for optimizing network connectivity. It has several applications in computational sustainability including spatial conservation planning, pre-disaster network preparation, and river network optimization. A common assumption in previous work has been made that network parameters (e.g., probability of species colonization) are precisely known, which is unrealistic in real- world settings. We therefore address the robust river network design problem where the goal is to optimize river connectivity for fish movement by removing barriers. We assume that fish passability probabilities are known only imprecisely, but are within some interval bounds. We then develop a planning approach that computes the policies with either high robust ratio or low regret. Empirically, our approach scales well to large river networks. We also provide insights into the solutions generated by our robust approach, which has significantly higher robust ratio than the baseline solution with mean parameter estimates.
In this paper, we consider stochastic second-order methods for minimizing a finite summation of nonconvex functions. One important key is to find an ingenious but cheap scheme to incorporate local curvature information. Since the true Hessian matrix is often a combination of a cheap part and an expensive part, we propose a structured stochastic quasi-Newton method by using partial Hessian information as much as possible. By further exploiting either the low-rank structure or the kronecker-product properties of the quasi-Newton approximations, the computation of the quasi-Newton direction is affordable. Global convergence to stationary point and local superlinear convergence rate are established under some mild assumptions. Numerical results on logistic regression, deep autoencoder networks and deep convolutional neural networks show that our proposed method is quite competitive to the state-of-the-art methods.