Do you want to publish a course? Click here

Disk Kinematics and Stability in High-Mass Star Formation: Linking Simulations and Observations

71   0   0.0 ( 0 )
 Added by Aida Ahmadi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the disk-mediated accretion scenario for the formation of the most massive stars, gravitational instabilities in the disk can force it to fragment. We investigate the effects of inclination and spatial resolution on observable kinematics and stability of disks in high-mass star formation. We study a high-resolution 3D radiation-hydrodynamic simulation that leads to the fragmentation of a massive disk. Using RADMC-3D we produce 1.3 mm continuum and CH3CN line cubes at different inclinations. The model is set to different distances and synthetic observations are created for ALMA at ~80 mas resolution and NOEMA at ~0.3. The synthetic ALMA observations resolve all fragments and their kinematics well. The synthetic NOEMA observations at 800 pc (~300 au resolution) are able to resolve the fragments, while at 2000 pc (~800 au resolution) only a single slightly elongated structure is observed. The position-velocity (PV) plots show the differential rotation of material best in the edge-on views. As the observations become less resolved, the inner high-velocity components of the disk become blended with the envelope and the PV plots resemble rigid-body-like rotation. Protostellar mass estimates from PV plots of poorly resolved observations are therefore overestimated. We fit the emission of CH3CN lines and produce maps of gas temperature with values in the range of 100-300 K. Studying the Toomre stability of the disks in the resolved observations, we find Q values below the critical value for stability against gravitational collapse at the positions of the fragments and the arms connecting the fragments. For the poorly resolved observations we find low Q values in the outskirts of the disk. Therefore we are able to predict that the disk is unstable and fragmenting even in poorly resolved observations. This conclusion is true regardless of knowledge about the inclination of the disk.



rate research

Read More

Aims: We resolve the small-scale structure around the high-mass hot core region G351.77-0.54 to investigate its disk and fragmentation properties. Methods: Using ALMA at 690GHz with baselines exceeding 1.5km, we study the dense gas, dust and outflow emission at an unprecedented spatial resolution of 0.06 ([email protected]). Results: Within the inner few 1000AU, G351.77 fragments into at least four cores (brightness temperatures between 58 and 197K). The central structure around the main submm source #1 with a diameter of ~0.5 does not show additional fragmentation. While the CO(6-5) line wing emission shows an outflow lobe in the north-western direction emanating from source #1, the dense gas tracer CH3CN shows a velocity gradient perpendicular to the outflow that is indicative of rotational motions. Absorption profile measurements against the submm source #2 indicate infall rates on the order of 10^{-4} to 10^{-3}M_sun/yr which can be considered as an upper limit of the mean accretion rates. The position-velocity diagrams are consistent with a central rotating disk-like structure embedded in an infalling envelope, but they may also be influenced by the outflow. Using the CH_3CN(37_k-36_k) k-ladder with excitation temperatures up to 1300K, we derive a gas temperature map of source #1 exhibiting temperatures often in excess of 1000K. Brightness temperatures of the submm continuum never exceed 200K. This discrepancy between gas temperatures and submm dust brightness temperatures (in the optically thick limit) indicates that the dust may trace the disk mid-plane whereas the gas could be tracing a hotter gaseous disk surface layer. In addition, we conduct a pixel-by-pixel Toomre gravitational stability analysis of the central rotating structure. The derived high Q values throughout the structure confirm that this central region appears stable against gravitational instability.
We present 1.05 mm ALMA observations of the deeply embedded high-mass protocluster G11.92-0.61, designed to search for low-mass cores within the accretion reservoir of the massive protostars. Our ALMA mosaic, which covers an extent of ~0.7 pc at sub-arcsecond (~1400 au) resolution, reveals a rich population of 16 new millimetre continuum sources surrounding the three previously-known millimetre cores. Most of the new sources are located in the outer reaches of the accretion reservoir: the median projected separation from the central, massive (proto)star MM1 is ~0.17 pc. The derived physical properties of the new millimetre continuum sources are consistent with those of low-mass prestellar and protostellar cores in nearby star-forming regions: the median mass, radius, and density of the new sources are 1.3 Msun, 1600 au, and n(H2)~10^7 cm^-3. At least three of the low-mass cores in G11.92-0.61 drive molecular outflows, traced by high-velocity 12CO(3-2) (observed with the SMA) and/or by H2CO and CH3OH emission (observed with ALMA). This finding, combined with the known outflow/accretion activity of MM1, indicates that high- and low-mass stars are forming (accreting) simultaneously within this protocluster. Our ALMA results are consistent with the predictions of competitive-accretion-type models in which high-mass stars form along with their surrounding clusters.
157 - Th. Maschberger 2011
Recent analyses of mass segregation diagnostics in star forming regions invite a comparison with the output of hydrodynamic simulations of star formation. In this work we investigate the state of mass segregation of stars (i.e. sink particles in the simulations) in the case of hydrodynamical simulations which omit feedback. We first discuss methods to quantify mass segregation in substructured regions, either based on the minimum spanning tree (Allisons Lambda), or through analysis of correlations between stellar mass and local stellar surface number densities. We find that the presence of even a single outlier (i.e. a massive object far from other stars) can cause the Allison Lambda method to describe the system as inversely mass segregated, even where in reality the most massive sink particles are overwhelmingly in the centres of the subclusters. We demonstrate that a variant of the Lambda method is less susceptible to this tendency but also argue for an alternative representation of the data in the plane of stellar mass versus local surface number density. The hydrodynamical simulations show global mass segregation from very early times which continues throughout the simulation, being only mildly influenced during sub-cluster merging. We find that up to approx. 2-3% of the massive sink particles (m > 2.5 Msun) are in relative isolation because they have formed there, although other sink particles can form later in their vicinity. Ejections of massive sinks from subclusters do not contribute to the number of isolated massive sink particles, as the gravitational softening in the calculation suppresses this process.
Aims: We aim to understand the fragmentation as well as the disk formation, outflow generation and chemical processes during high-mass star formation on spatial scales of individual cores. Methods: Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30m telescope, we have observed in the IRAM large program CORE the 1.37mm continuum and spectral line emission at high angular resolution (~0.4) for a sample of 20 well-known high-mass star-forming regions with distances below 5.5kpc and luminosities larger than 10^4Lsun. Results: We present the overall survey scope, the selected sample, the observational setup and the main goals of CORE. Scientifically, we concentrate on the mm continuum emission on scales on the order of 1000AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented versus singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions: The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation.
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibility that star formation is triggered by nearby HII regions. We present a high angular resolution study of a sample of 8 massive proto-cluster clumps. Combining infrared data, we use few-arcsecond resolution radio- and millimeter interferometric data to study their fragmentation and evolution. Our sample is unique in the sense that all the clumps have neighboring HII regions. Taking advantage of that, we test triggered star formation using a novel method where we study the alignment of the centres of mass traced by dust emission at multiple scales. The eight massive clumps have masses ranging from 228 to 2279 $M_odot$. The brightest compact structures within infrared bright clumps are typically associated with embedded compact radio continuum sources. The smaller scale structures of $R_{rm eff}$ $sim$ 0.02 pc observed within each clump are mostly gravitationally bound and massive enough to form at least a B3-B0 type star. Many condensations have masses larger than 8 $M_odot$ at small scale of $R_{rm eff}$ $sim$ 0.02 pc. Although the clumps are mostly infrared quiet, the dynamical movements are active at clump scale ($sim$ 1 pc). We studied the spatial distribution of the gas conditions detected at different scales. For some sources we find hints of external triggering, whereas for others we find no significant pattern that indicates triggering is dynamically unimportant. This probably indicates that the different clumps go through different evolutionary paths. In this respect, studies with larger samples are highly desired.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا