No Arabic abstract
We give a new formula for $p$-typical real topological cyclic homology that refines the fiber sequence formula discovered by Nikolaus and Scholze for $p$-typical topological cyclic homology to one involving genuine $C_2$-spectra. To accomplish this, we give a new definition of the $infty$-category of real $p$-cyclotomic spectra that replaces the usage of genuinely equivariant dihedral spectra with the parametrized Tate construction $(-)^{t_{C_2} mu_p}$ associated to the dihedral group $D_{2p} = mu_p rtimes C_2$. We then define a $p$-typical and $infty$-categorical version of H{o}genhavens $O(2)$-orthogonal cyclotomic spectra, construct a forgetful functor relating the two theories, and show that this functor restricts to an equivalence between full subcategories of appropriately bounded below objects.
We show that Lubin-Tate spectra at the prime $2$ are Real oriented and Real Landweber exact. The proof is by application of the Goerss-Hopkins-Miller theorem to algebras with involution. For each height $n$, we compute the entire homotopy fixed point spectral sequence for $E_n$ with its $C_2$-action given by the formal inverse. We study, as the height varies, the Hurewicz images of the stable homotopy groups of spheres in the homotopy of these $C_2$-fixed points.
We study certain formal group laws equipped with an action of the cyclic group of order a power of $2$. We construct $C_{2^n}$-equivariant Real oriented models of Lubin-Tate spectra $E_h$ at heights $h=2^{n-1}m$ and give explicit formulas of the $C_{2^n}$-action on their coefficient rings. Our construction utilizes equivariant formal group laws associated with the norms of the Real bordism theory $MU_{mathbb{R}}$, and our work examines the height of the formal group laws of the Hill-Hopkins-Ravenel norms of $MU_{mathbb{R}}$.
The main result of this note is a parametrized version of the Borsuk-Ulam theorem. We show that for a continuous family of Borsuk-Ulam situations, parameterized by points of a compact manifold W, its solution set also depends continuously on the parameter space W. Continuity here means that the solution set supports a homology class which maps onto the fundamental class of W. When W is a subset of Euclidean space, we also show how to construct such a continuous family starting from a family depending in the same way continuously on the points of the boundary of W. This solves a problem related to a conjecture which is relevant for the construction of equilibrium strategies in repeated two-player games with incomplete information. A new method (of independent interest) used in this context is a canonical symmetric squaring construction in Cech homology with coefficients in Z/2Z.
The topological Hochschild homology $THH(A)$ of an orthogonal ring spectrum $A$ can be defined by evaluating the cyclic bar construction on $A$ or by applying Bokstedts original definition of $THH$ to $A$. In this paper, we construct a chain of stable equivalences of cyclotomic spectra comparing these two models for $THH(A)$. This implies that the t
We construct and study a t-structure on p-typical cyclotomic spectra and explain how to recover crystalline cohomology of smooth schemes over perfect fields using this t-structure. Our main tool is a new approach to p-typical cyclotomic spectra via objects we call p-typical topological Cartier modules. Using these, we prove that the heart of the cyclotomic t-structure is the full subcategory of derived V-complete objects in the abelian category of p-typical Cartier modules.