Do you want to publish a course? Click here

On the parametrized Tate construction and two theories of real $p$-cyclotomic spectra

108   0   0.0 ( 0 )
 Added by Jay Shah
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We give a new formula for $p$-typical real topological cyclic homology that refines the fiber sequence formula discovered by Nikolaus and Scholze for $p$-typical topological cyclic homology to one involving genuine $C_2$-spectra. To accomplish this, we give a new definition of the $infty$-category of real $p$-cyclotomic spectra that replaces the usage of genuinely equivariant dihedral spectra with the parametrized Tate construction $(-)^{t_{C_2} mu_p}$ associated to the dihedral group $D_{2p} = mu_p rtimes C_2$. We then define a $p$-typical and $infty$-categorical version of H{o}genhavens $O(2)$-orthogonal cyclotomic spectra, construct a forgetful functor relating the two theories, and show that this functor restricts to an equivalence between full subcategories of appropriately bounded below objects.



rate research

Read More

We show that Lubin-Tate spectra at the prime $2$ are Real oriented and Real Landweber exact. The proof is by application of the Goerss-Hopkins-Miller theorem to algebras with involution. For each height $n$, we compute the entire homotopy fixed point spectral sequence for $E_n$ with its $C_2$-action given by the formal inverse. We study, as the height varies, the Hurewicz images of the stable homotopy groups of spheres in the homotopy of these $C_2$-fixed points.
We study certain formal group laws equipped with an action of the cyclic group of order a power of $2$. We construct $C_{2^n}$-equivariant Real oriented models of Lubin-Tate spectra $E_h$ at heights $h=2^{n-1}m$ and give explicit formulas of the $C_{2^n}$-action on their coefficient rings. Our construction utilizes equivariant formal group laws associated with the norms of the Real bordism theory $MU_{mathbb{R}}$, and our work examines the height of the formal group laws of the Hill-Hopkins-Ravenel norms of $MU_{mathbb{R}}$.
The main result of this note is a parametrized version of the Borsuk-Ulam theorem. We show that for a continuous family of Borsuk-Ulam situations, parameterized by points of a compact manifold W, its solution set also depends continuously on the parameter space W. Continuity here means that the solution set supports a homology class which maps onto the fundamental class of W. When W is a subset of Euclidean space, we also show how to construct such a continuous family starting from a family depending in the same way continuously on the points of the boundary of W. This solves a problem related to a conjecture which is relevant for the construction of equilibrium strategies in repeated two-player games with incomplete information. A new method (of independent interest) used in this context is a canonical symmetric squaring construction in Cech homology with coefficients in Z/2Z.
The topological Hochschild homology $THH(A)$ of an orthogonal ring spectrum $A$ can be defined by evaluating the cyclic bar construction on $A$ or by applying Bokstedts original definition of $THH$ to $A$. In this paper, we construct a chain of stable equivalences of cyclotomic spectra comparing these two models for $THH(A)$. This implies that the t
We construct and study a t-structure on p-typical cyclotomic spectra and explain how to recover crystalline cohomology of smooth schemes over perfect fields using this t-structure. Our main tool is a new approach to p-typical cyclotomic spectra via objects we call p-typical topological Cartier modules. Using these, we prove that the heart of the cyclotomic t-structure is the full subcategory of derived V-complete objects in the abelian category of p-typical Cartier modules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا