Do you want to publish a course? Click here

Comparing cyclotomic structures on different models for topological Hochschild homology

84   0   0.0 ( 0 )
 Added by Steffen Sagave
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The topological Hochschild homology $THH(A)$ of an orthogonal ring spectrum $A$ can be defined by evaluating the cyclic bar construction on $A$ or by applying Bokstedts original definition of $THH$ to $A$. In this paper, we construct a chain of stable equivalences of cyclotomic spectra comparing these two models for $THH(A)$. This implies that the t



rate research

Read More

We calculate the integral homotopy groups of THH(l) at any prime and of THH(ko) at p=2, where l is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
Twisted topological Hochschild homology of $C_n$-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this paper we introduce tools for computing twisted THH, which we apply to computations for Thom spectra, Eilenberg-MacLane spectra, and the real bordism spectrum $MU_{mathbb{R}}$. In particular, we construct an equivariant version of the Bokstedt spectral sequence, the formulation of which requires further development of the Hochschild homology of Green functors, first introduced by Blumberg, Gerhardt, Hill, and Lawson.
We compute topological Hochschild homology of sufficiently structured forms of truncated Brown--Peterson spectra with coefficients. In particular, we compute $operatorname{THH}_*(operatorname{taf}^D;M)$ for $Min { Hmathbb{Z}_{(3)},k(1),k(2)}$ where $operatorname{taf}^D$ is the $E_{infty}$ form of $BPlangle 2rangle$ constructed by Hill--Lawson. We compute $operatorname{THH}_*(operatorname{tmf}_1(3);M)$ when $Min { Hmathbb{Z}_{(2)},k(2)}$ where $operatorname{tmf}_1(3)$ is the $E_{infty}$ form of $BPlangle 2rangle$ constructed by Lawson--Naumann. We also compute $operatorname{THH}_*(Blangle nrangle;M)$ for $M=Hmathbb{Z}_{(p)}$ and certain $E_3$ forms $Blangle nrangle$ of $BPlangle nrangle$. For example at $p=2$, this result applies to the $E_3$ forms of $BPlangle nrangle$ constructed by Hahn--Wilson.
We show that an important classical fixed point invariant, the Reidemeister trace, arises as a topological Hochschild homology transfer. This generalizes a corresponding classical result for the Euler characteristic and is a first step in showing the Reidemeister trace is in the image of the cyclotomic trace. The main result follows from developing the relationship between shadows, topological Hochschild homology, and Morita invariance in bicategorical generality.
We determine higher topological Hochschild homology of rings of integers in number fields with coefficients in suitable residue fields. We use the iterative description of higher THH for this and Postnikov arguments that allow us to reduce the necessary computations to calculations in homological algebra, starting from the results of Bokstedt and Lindenstrauss-Madsen on (ordinary) topological Hochschild homology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا