No Arabic abstract
We experimentally demonstrate high degree of polarization of 13C nuclear spins weakly interacting with nitrogen-vacancy (NV) centers in diamond. We combine coherent microwave excitation pulses with optical illumination to provide controlled relaxation and achieve a polarity-tunable, fast nuclear polarization of degree higher than 85% at room temperature for remote 13C nuclear spins exhibiting hyperfine interaction strength with NV centers of the order of 600 kHz. We show with the aid of numerical simulation that the anisotropic hyperfine tensor components naturally provide a route to control spin mixing parameter so that highly efficient nuclear polarization is enabled through careful tuning of nuclear quantization axis by external magnetic field. We further discuss spin dynamics and wide applicability of this method to various target 13C nuclear spins around the NV center electron spin. The proposed control method demonstrates an efficient and versatile route to realize, for example, high-fidelity spin register initialization and quantum metrology using nuclear spin resources in solids.
We propose a hybrid quantum architecture for engineering a photonicMott insulator-superfluid phase transition in a two-dimensional (2D) square lattice of a superconducting transmission line resonator (TLR) coupled to a single nitrogen-vacancy (NV) center encircled by a persistent current qubit. The localization-delocalization transition results from the interplay between the on-site repulsion and the nonlocal tunneling. The phase boundary in the case of photon hopping with real-valued and complex-valued amplitudes can be obtained using the mean-field approach. Also, the quantum jump technique is employed to describe the phase diagram when the dissipative effects are considered. The unique feature of our architecture is the good tunability of effective on-site repulsion and photon-hopping rate, and the local statistical property of TLRs which can be analyzed readily using presentmicrowave techniques. Our work opens new perspectives in quantum simulation of condensed-matter and many-body physics using a hybrid spin circuit-QED system. The experimental challenges are realizable using currently available technologies.
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. Strong coupling in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond optomechanical crystals as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times $T_2^* = 1.5 mu s$ and $T_2 = 72 mu s$ despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.
We studied the dynamic nuclear spin polarization of nitrogen in negatively charged nitrogen-vacancy (NV) centers in diamond both experimentally and theoretically over a wide range of magnetic fields from 0 to 1100 G covering both the excited-state level anti-crossing and the ground-state level anti-crossing magnetic field regions. Special attention was paid to the less studied ground-state level anti-crossing region. The nuclear spin polarization was inferred from measurements of the optically detected magnetic resonance signal. These measurements show that a very large (up to $96 pm 2%$) nuclear spin polarization of nitrogen can be achieved over a very broad range of magnetic field starting from around 400 G up to magnetic field values substantially exceeding the ground-state level anti-crossing at 1024 G. We measured the influence of angular deviations of the magnetic field from the NV axis on the nuclear spin polarization efficiency and found that, in the vicinity of the ground-state level anti-crossing, the nuclear spin polarization is more sensitive to this angle than in the vicinity of the excited-state level anti-crossing. Indeed, an angle as small as a tenth of a degree of arc can destroy almost completely the spin polarization of a nitrogen nucleus. In addition, we investigated theoretically the influence of strain and optical excitation power on the nuclear spin polarization.
Efficient polarization of organic molecules is of extraordinary relevance when performing nuclear magnetic resonance (NMR) and imaging. Commercially available routes to dynamical nuclear polarization (DNP) work at extremely low-temperatures, thus bringing the molecules out of their ambient thermal conditions and relying on the solidification of organic samples. In this work we investigate polarization transfer from optically-pumped nitrogen vacancy centers in diamond to external molecules at room temperature. This polarization transfer is described by both an extensive analytical analysis and numerical simulations based on spin bath bosonization and is supported by experimental data in excellent agreement. These results set the route to hyperpolarization of diffusive molecules in different scenarios and consequently, due to increased signal, to high-resolution NMR.
Characterizing the local internal environment surrounding solid-state spin defects is crucial to harnessing them as nanoscale sensors of external fields. This is especially germane to the case of defect ensembles which can exhibit a complex interplay between interactions, internal fields and lattice strain. Working with the nitrogen-vacancy (NV) center in diamond, we demonstrate that local electric fields dominate the magnetic resonance behavior of NV ensembles at low magnetic field. We introduce a simple microscopic model that quantitatively captures the observed spectra for samples with NV concentrations spanning over two orders of magnitude. Motivated by this understanding, we propose and implement a novel method for the nanoscale localization of individual charges within the diamond lattice; our approach relies upon the fact that the charge induces an NV dark state which depends on the electric field orientation.