Do you want to publish a course? Click here

Dynamic $^{14}rm N$ nuclear spin polarization in nitrogen-vacancy centers in diamond

393   0   0.0 ( 0 )
 Added by Laima Busaite
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the dynamic nuclear spin polarization of nitrogen in negatively charged nitrogen-vacancy (NV) centers in diamond both experimentally and theoretically over a wide range of magnetic fields from 0 to 1100 G covering both the excited-state level anti-crossing and the ground-state level anti-crossing magnetic field regions. Special attention was paid to the less studied ground-state level anti-crossing region. The nuclear spin polarization was inferred from measurements of the optically detected magnetic resonance signal. These measurements show that a very large (up to $96 pm 2%$) nuclear spin polarization of nitrogen can be achieved over a very broad range of magnetic field starting from around 400 G up to magnetic field values substantially exceeding the ground-state level anti-crossing at 1024 G. We measured the influence of angular deviations of the magnetic field from the NV axis on the nuclear spin polarization efficiency and found that, in the vicinity of the ground-state level anti-crossing, the nuclear spin polarization is more sensitive to this angle than in the vicinity of the excited-state level anti-crossing. Indeed, an angle as small as a tenth of a degree of arc can destroy almost completely the spin polarization of a nitrogen nucleus. In addition, we investigated theoretically the influence of strain and optical excitation power on the nuclear spin polarization.

rate research

Read More

102 - Jiwon Yun , Kiho Kim , 2019
We experimentally demonstrate high degree of polarization of 13C nuclear spins weakly interacting with nitrogen-vacancy (NV) centers in diamond. We combine coherent microwave excitation pulses with optical illumination to provide controlled relaxation and achieve a polarity-tunable, fast nuclear polarization of degree higher than 85% at room temperature for remote 13C nuclear spins exhibiting hyperfine interaction strength with NV centers of the order of 600 kHz. We show with the aid of numerical simulation that the anisotropic hyperfine tensor components naturally provide a route to control spin mixing parameter so that highly efficient nuclear polarization is enabled through careful tuning of nuclear quantization axis by external magnetic field. We further discuss spin dynamics and wide applicability of this method to various target 13C nuclear spins around the NV center electron spin. The proposed control method demonstrates an efficient and versatile route to realize, for example, high-fidelity spin register initialization and quantum metrology using nuclear spin resources in solids.
218 - A. Jarmola , A. Berzins , J. Smits 2015
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV$^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
We demonstrate a robust, scale-factor-free vector magnetometer, which uses a closed-loop frequency-locking scheme to simultaneously track Zeeman-split resonance pairs of nitrogen-vacancy (NV) centers in diamond. Compared with open-loop methodologies, this technique is robust against fluctuations in temperature, resonance linewidth, and contrast; offers a three-order-of-magnitude increase in dynamic range; and allows for simultaneous interrogation of multiple transition frequencies. By directly detecting the resonance frequencies of NV centers aligned along each of the diamonds four tetrahedral crystallographic axes, we perform full vector reconstruction of an applied magnetic field.
We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located less than ~100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency. The transition is locked over several minutes and drifts of the peak position on timescales greater than ~100 ms are reduced to a fraction of the single-scan linewidth, with standard deviation as low as 16 MHz (obtained for an NV in bulk, ultra-pure diamond). These techniques should improve the entanglement success probability in quantum communications protocols.
The ability to optically initialize the electronic spin of the nitrogen-vacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular diffusion near the diamond surface compared to that in bulk, an observation consistent with present models of the microscopic structure of a fluid close to a solid interface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا