We propose a set of diffeomorphism that act non-trivially near the horizon of the Kerr black hole. We follow the recent developments of Haco-Hawking-Perry-Strominger to quantify this phase space, with the most substantial difference being our choice of vectors fields. Our gravitational charges are organized into a Virasoro-Kac-Moody algebra with non-trivial central extensions. We interpret this algebra as arising from a warped conformal field theory. Using the data we can infer from this warped CFT description, we capture the thermodynamic properties of the Kerr black hole.
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u(1) current algebras and recover the surprisingly simple entropy formula $S=2pi (J_0^+ + J_0^-)$, where $J_0^pm$ are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.
In the context of the interaction between the electromagnetic field and a dielectric dispersive lossless medium, we present a non-linear version of the relativistically covariant Hopfield model, which is suitable for the description of a dielectric Kerr perturbation propagating in a dielectric medium. The non-linearity is introduced in the Lagrangian through a self-interacting term proportional to the fourth power of the polarization field. We find an exact solution for the nonlinear equations describing a propagating perturbation in the dielectric medium. Furthermore the presence of an analogue Hawking effect, as well as the thermal properties of the model, are discussed, confirming and improving the results achieved in the scalar case.
Recently it has been speculated that a set of diffeomorphisms exist which act non-trivially on the horizon of some black holes such as kerr and Kerr-Newman black hole. cite{Haco:2018ske,Haco:2019ggi}. Using this symmetry in covariant phase space formalism one can obtains conserved charges as surface integrals on the horizon. Kerr-Bolt spacetime is well-known for its asymptotically topology and has been studied widely in recent years. In this work we are going to study Kerr-Bolt black hole and provide a holographically describtion of it in term of warped confromal field theory.
We study the Complexity=Volume conjecture for Warped AdS$_3$ black holes. We compute the spatial volume of the Einstein-Rosen bridge and we find that its growth rate is proportional to the Hawking temperature times the Bekenstein-Hawking entropy. This is consistent with expectations about computational complexity in the boundary theory.
It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We compute the static response of Kerr black holes to scalar, electromagnetic, and gravitational fields at all orders in black hole spin. We use the unambiguous and gauge-invariant definition of Love numbers and their spin-0 and spin-1 analogs as Wilson coefficients of the point particle effective field theory. This definition also allows one to clearly distinguish between conservative and dissipative response contributions. We demonstrate that the behavior of Kerr black holes responses to spin-0 and spin-1 fields is very similar to that of the spin-2 perturbations. In particular, static conservative responses vanish identically for spinning black holes. This implies that vanishing Love numbers are a generic property of black holes in four-dimensional general relativity. We also show that the dissipative part of the response does not vanish even for static perturbations due to frame-dragging.