Do you want to publish a course? Click here

The high-energy collision of black holes in higher dimensions

74   0   0.0 ( 0 )
 Added by Ulrich Sperhake
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the gravitational wave energy $E_{rm rad}$ radiated in head-on collisions of equal-mass, nonspinning black holes in up to $D=8$ dimensional asymptotically flat spacetimes for boost velocities $v$ up to about $90,%$ of the speed of light. We identify two main regimes: Weak radiation at velocities up to about $40,%$ of the speed of light, and exponential growth of $E_{rm rad}$ with $v$ at larger velocities. Extrapolation to the speed of light predicts a limit of $12.9,%$ $(10.1,~7.7,~5.5,~4.5),%$. of the total mass that is lost in gravitational waves in $D=4$ $(5,,6,,7,,8)$ spacetime dimensions. In agreement with perturbative calculations, we observe that the radiation is minimal for small but finite velocities, rather than for collisions starting from rest. Our computations support the identification of regimes with super Planckian curvature outside the black-hole horizons reported by Okawa, Nakao, and Shibata [Phys.~Rev.~D {bf 83} 121501(R) (2011)].



rate research

Read More

174 - Betti Hartmann 2008
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in $d > 4$, but that hyperspherically symmetric black holes can be constructed numerically in generalized Einstein-Yang-Mills models. 5-dimensional black strings with horizon topology S^2 x S^1 are also discussed. These are so-called undeformed and deformed non-abelian black strings, which are translationally invariant and correspond to 4-dimensional non-abelian black holes trivially extended into one extra dimensions. The fact that black strings can be deformed, i.e. axially symmetric for constant values of the extra coordinate is a new feature as compared to black string solutions of Einstein (-Maxwell) theory. It is argued that these non-abelian black strings are thermodynamically unstable.
We consider Deser-Sarioglu-Tekin (DST) black holes as background and we study such the motion of massive particles as the collision of two spinning particles in the vicinity of its horizon. New kinds of orbits are allowed for small deviations of General Relativity, but the behavior of the collision is similar to the one observed for General Relativity. Some observables like bending of light and the perihelion precession are analyzed.
In this paper,we have studied phase transitions of higher dimensional charge black hole with spherical symmetry. we calculated the local energy and local temperature, and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters $(Q,Phi)$ of black hole thermodynamic system, in accordance with considering to the state parameters $(P,V)$ of Van der Waals system respectively. we obtain the critical point of black hole thermodynamic system, and find the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime, and is intrinsic property of black hole thermodynamic system.
We present the results of an analysis of superradiant energy flow due to scalar fields incident on an acoustic black hole. In addition to providing independent confirmation of the recent results in [5], we determine in detail the profile of energy flow everywhere outside the horizon. We confirm explicitly that in a suitable frame the energy flow is inward at the horizon and outward at infinity, as expected on physical grounds.
125 - G.W. Gibbons 2019
Two lectures given in Paris in 1985. They were circulated as a preprint Solitons And Black Holes In Four-Dimensions, Five-Dimensions. G.W. Gibbons (Cambridge U.) . PRINT-85-0958 (CAMBRIDGE), (Received Dec 1985). 14pp. and appeared in print in De Vega, H.J. ( Ed.), Sanchez, N. ( Ed.) : Field Theory, Quantum Gravity and Strings*, 46-59 and Preprint - GIBBONS, G.W. (REC.OCT.85) 14p. I have scanned the original, reformatted and and corrected various typos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا