No Arabic abstract
Acting as artificial synapses, two-terminal memristive devices are considered fundamental building blocks for the realization of artificial neural networks. Organized into large arrays with a top-down approach, memristive devices in conventional crossbar architecture demonstrated the implementation of brain-inspired computing for supervised and unsupervised learning. Alternative way using unconventional systems consisting of many interacting nano-parts have been proposed for the realization of biologically plausible architectures where the emergent behavior arises from a complexity similar to that of biological neural circuits. However, these systems were unable to demonstrate bio-realistic implementation of synaptic functionalities with spatio-temporal processing of input signals similarly to our brain. Here we report on emergent synaptic behavior of biologically inspired nanoarchitecture based on self-assembled and highly interconnected nanowire (NW) networks realized with a bottom up approach. The operation principle of this system is based on the mutual electrochemical interaction among memristive NWs and NW junctions composing the network and regulating its connectivity depending on the input stimuli. The functional connectivity of the system was shown to be responsible for heterosynaptic plasticity that was experimentally demonstrated and modelled in a multiterminal configuration, where the formation of a synaptic pathway between two neuron terminals is responsible for a variation in synaptic strength also at non-stimulated terminals. These results highlight the ability of nanowire memristive architectures for building brain-inspired intelligent systems based on complex networks able to physically compute the information arising from multi-terminal inputs.
Driven by machine-learning tasks neural networks have demonstrated useful capabilities as nonlinear hypothesis classifiers. The underlying technologies performing the dot product multiplication, the summation, and the nonlinear thresholding on the input data in electronics, however, are limited by the same capacitive challenges known from electronic integrated circuits. The optical domain, in contrast, provides low delay interconnectivity suitable for such node distributed non Von Neumann architectures relying on dense node to node communication. Thus, once the neural networks weights are set, the delay of the network is just given by the time of flight of the photon, which is in the picosecond range for photonic integrated circuits. However, the functionality of memory for storing the trained weights does not exists in optics, thus demanding a fresh look to explore synergies between photonics and electronics in neural networks. Here we provide a roadmap to pave the way for emerging hybridized photonic electronic neural networks by taking a detailed look into a single nodes perceptron, discussing how it can be realized in hybrid photonic electronic heterogeneous technologies. We show that a set of materials exist that exploit synergies with respect to a number of constrains including electronic contacts, memory functionality, electrooptic modulation, optical nonlinearity, and device packaging. We find that the material ITO, in particular, could provide a viable path for both the perceptron weights and the nonlinear activation function, while simultaneously being a foundry process near material. We finally identify a number of challenges that, if solved, could accelerate the adoption of such heterogeneous integration strategies of emerging memory materials into integrated photonics platforms for real time responsive neural networks.
The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.
The advent of reliable, nanoscale memristive components is promising for next generation compute-in-memory paradigms, however, the intrinsic variability in these devices has prevented widespread adoption. Here we show coherent electron wave functions play a pivotal role in the nanoscale transport properties of these emerging, non-volatile memories. By characterizing both filamentary and non-filamentary memristive devices as disordered Anderson systems, the switching characteristics and intrinsic variability arise directly from the universality of electron transport in disordered media. Our framework suggests localization phenomena in nanoscale, solid-state memristive systems are directly linked to circuit level performance. We discuss how quantum conductance fluctuations in the active layer set a lower bound on device variability. This finding implies there is a fundamental quantum limit on the reliability of memristive devices, and electron coherence will play a decisive role in surpassing or maintaining Moores Law with these systems.
In self-organized criticality (SOC) models, as well as in standard phase transitions, criticality is only present for vanishing driving external fields $h rightarrow 0$. Considering that this is rarely the case for natural systems, such a restriction poses a challenge to the explanatory power of these models. Besides that, in models of dissipative systems like earthquakes, forest fires and neuronal networks, there is no true critical behavior, as expressed in clean power laws obeying finite-size scaling, but a scenario called dirty criticality or self-organized quasi-criticality (SOqC). Here, we propose simple homeostatic mechanisms which promote self-organization of coupling strengths, gains, and firing thresholds in neuronal networks. We show that near criticality can be reached and sustained even in the presence of external inputs because the firing thresholds adapt to and cancel the inputs, a phenomenon similar to perfect adaptation in sensory systems. Similar mechanisms can be proposed for the couplings and local thresholds in spin systems and cellular automata, which could lead to applications in earthquake, forest fire, stellar flare, voting and epidemic modeling.
Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the breathing rhythm of mammals through periodic firing bursts. We show that the properties of a such a randomly connected network of identical excitatory neurons are fundamentally different from those of uniformly connected neuronal networks as described by mean-field theory. We show that (i) the connectivity properties of the networks determines the location of emergent pacemakers that trigger the firing bursts and (ii) that the collective desensitization that terminates the firing bursts is determined again by the network connectivity, through k-core clusters of neurons.