Do you want to publish a course? Click here

Properties of reionization-era galaxies from JWST luminosity functions and 21-cm interferometry

77   0   0.0 ( 0 )
 Added by Jaehong Park
 Publication date 2019
  fields Physics
and research's language is English
 Authors Jaehong Park




Ask ChatGPT about the research

Next generation observatories will enable us to study the first billion years of our Universe in unprecedented detail. Foremost among these are 21-cm interferometry with the HERA and the SKA, and high-$z$ galaxy observations with the James Webb Space Telescope (JWST). Taking a basic galaxy model, in which we allow the star formation rates and ionizing escape fractions to have a power-law dependence on halo mass with an exponential turnover below some threshold, we quantify how observations from these instruments can be used to constrain the astrophysics of high-$z$ galaxies. For this purpose, we generate mock JWST LFs, based on two different hydrodynamical cosmological simulations; these have intrinsic luminosity functions (LFs) which turn over at different scales and yet are fully consistent with present-day observations. We also generate mock 21-cm power spectrum observations, using 1000h observations with SKA1 and a moderate foreground model. Using only JWST data, we predict up to a factor of 2-3 improvement (compared with HST) in the fractional uncertainty of the star formation rate to halo mass relation and the scales at which the LFs peak (i.e. turnover). Most parameters regulating the UV galaxy properties can be constrained at the level of $sim 10$% or better, if either (i) we are able to better characterize systematic lensing uncertainties than currently possible; or (ii) the intrinsic LFs peak at magnitudes brighter than $M_{rm UV} lesssim -13$. Otherwise, improvement over HST-based inference is modest. When combining with upcoming 21-cm observations, we are able to significantly mitigate degeneracies, and constrain all of our astrophysical parameters, even for our most pessimistic assumptions about upcoming JWST LFs. The 21-cm observations also result in an order of magnitude improvement in constraints on the EoR history.

rate research

Read More

The properties of the first galaxies, expected to drive the Cosmic Dawn (CD) and the Epoch of Reionization (EoR), are encoded in the 3D structure of the cosmic 21-cm signal. Parameter inference from upcoming 21-cm observations promises to revolutionize our understanding of these unseen galaxies. However, prior inference was done using models with several simplifying assumptions. Here we introduce a flexible, physically-motivated parametrization for high-$z$ galaxy properties, implementing it in the public code 21cmFAST. In particular, we allow their star formation rates and ionizing escape fraction to scale with the masses of their host dark matter halos, and directly compute inhomogeneous, sub-grid recombinations in the intergalactic medium. Combining current Hubble observations of the rest-frame UV luminosity function (UV LFs) at high-$z$ with a mock 1000h 21-cm observation using the Hydrogen Epoch of Reionization Arrays (HERA), we constrain the parameters of our model using a Monte Carlo Markov Chain sampler of 3D simulations, 21CMMC. We show that the amplitude and scaling of the stellar mass with halo mass is strongly constrained by LF observations, while the remaining galaxy properties are constrained mainly by 21-cm observations. The two data sets compliment each other quite well, mitigating degeneracies intrinsic to each observation. All eight of our astrophysical parameters are able to be constrained at the level of $sim 10%$ or better. The updat
243 - Xiaosheng Zhao 2021
Tomographic three-dimensional 21 cm images from the epoch of reionization contain a wealth of information about the reionization of the intergalactic medium by astrophysical sources. Conventional power spectrum analysis cannot exploit the full information in the 21 cm data because the 21 cm signal is highly non-Gaussian due to reionization patchiness. We perform a Bayesian inference of the reionization parameters where the likelihood is implicitly defined through forward simulations using density estimation likelihood-free inference (DELFI). We adopt a trained 3D Convolutional Neural Network (CNN) to compress the 3D image data into informative summaries (DELFI-3D CNN). We show that this method recovers accurate posterior distributions for the reionization parameters. Our approach outperforms earlier analysis based on two-dimensional 21 cm images. In contrast, an MCMC analysis of the 3D lightcone-based 21 cm power spectrum alone and using a standard explicit likelihood approximation results in inaccurate credible parameter regions both in terms of the location and shape of the contours. Our proof-of-concept study implies that the DELFI-3D CNN can effectively exploit more information in the 3D 21 cm images than a 2D CNN or power spectrum analysis. This technique can be readily extended to include realistic effects and is therefore a promising approach for the scientific interpretation of future 21 cm observation data.
Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology from redshifts 1<z<4 . In this review we discuss recent advances in our theoretical understanding of the epoch of reionization (EoR), the application of 21 cm tomography to cosmology and measurements of the dark energy equation of state after reionization, and the instrumentation and observational techniques shared by 21 cm EoR and post reionization cosmology machines. We place particular emphasis on the expected signal and observational capabilities of first generation 21 cm fluctuation instruments.
127 - Girish Kulkarni 2017
We present here predictions for the spatial distribution of 21 cm brightness temperature fluctuations from high-dynamic-range simulations for AGN-dominated reionization histories that have been tested against available Lyman-alpha and CMB data. We model AGN by extrapolating the observed M-sigma relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. We assess the observability of the predicted spatial 21 cm fluctuations by ongoing and upcoming experiments in the late stages of reionization in the limit in which the hydrogen 21 cm spin temperature is significantly larger than the CMB temperature. Our AGN-dominated reionization histories increase the variance of the 21 cm emission by a factor of up to ten compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK^2 at scales accessible to experiments (k < 1 h/cMpc). This is lower than the sensitivity claimed to have been already reached by ongoing experiments by only a factor of about two or less. When reionization is dominated by AGN, the 21 cm power spectrum is enhanced on all scales due to the enhanced bias of the clustering of the more massive haloes and the peak in the large scale 21 cm power is strongly enhanced and moved to larger scales due to bigger characteristic bubble sizes. AGN dominated reionization should be easily detectable by LOFAR (and later HERA and SKA1) at their design sensitivity, assuming successful foreground subtraction and instrument calibration. Conversely, these could become the first non-trivial reionization scenarios to be ruled out by 21 cm experiments, thereby constraining the contribution of AGN to reionization.
122 - Anastasia Fialkov 2013
We present the first complete calculation of the history of the inhomogeneous 21-cm signal from neutral hydrogen during the era of the first stars. We use hybrid computational methods to capture the large-scale distribution of the first stars, whose radiation couples to the neutral hydrogen emission, and to evaluate the 21-cm signal from z ~ 15-35. In our realistic picture large-scale fluctuations in the 21-cm signal are sourced by the inhomogeneous density field and by the Ly-alpha and X-ray radiative backgrounds. The star formation is suppressed by two spatially varying effects: negative feedback provided by the Lyman-Werner radiative background, and supersonic relative velocities between the gas and dark matter. Our conclusions are quite promising: we find that the fluctuations imprinted by the inhomogeneous Ly-alpha background in the 21-cm signal at z ~ 25 should be detectable with the Square Kilometer Array.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا