No Arabic abstract
Algorithmic risk assessments are increasingly used to help humans make decisions in high-stakes settings, such as medicine, criminal justice and education. In each of these cases, the purpose of the risk assessment tool is to inform actions, such as medical treatments or release conditions, often with the aim of reducing the likelihood of an adverse event such as hospital readmission or recidivism. Problematically, most tools are trained and evaluated on historical data in which the outcomes observed depend on the historical decision-making policy. These tools thus reflect risk under the historical policy, rather than under the different decision options that the tool is intended to inform. Even when tools are constructed to predict risk under a specific decision, they are often improperly evaluated as predictors of the target outcome. Focusing on the evaluation task, in this paper we define counterfactual analogues of common predictive performance and algorithmic fairness metrics that we argue are better suited for the decision-making context. We introduce a new method for estimating the proposed metrics using doubly robust estimation. We provide theoretical results that show that only under strong conditions can fairness according to the standard metric and the counterfactual metric simultaneously hold. Consequently, fairness-promoting methods that target parity in a standard fairness metric may --- and as we show empirically, do --- induce greater imbalance in the counterfactual analogue. We provide empirical comparisons on both synthetic data and a real world child welfare dataset to demonstrate how the proposed method improves upon standard practice.
Advances in language modeling architectures and the availability of large text corpora have driven progress in automatic text generation. While this results in models capable of generating coherent texts, it also prompts models to internalize social biases present in the training corpus. This paper aims to quantify and reduce a particular type of bias exhibited by language models: bias in the sentiment of generated text. Given a conditioning context (e.g., a writing prompt) and a language model, we analyze if (and how) the sentiment of the generated text is affected by changes in values of sensitive attributes (e.g., country names, occupations, genders) in the conditioning context using a form of counterfactual evaluation. We quantify sentiment bias by adopting individual and group fairness metrics from the fair machine learning literature, and demonstrate that large-scale models trained on two different corpora (news articles, and Wikipedia) exhibit considerable levels of bias. We then propose embedding and sentiment prediction-derived regularization on the language models latent representations. The regularizations improve fairness metrics while retaining comparable levels of perplexity and semantic similarity.
The use of machine learning systems to support decision making in healthcare raises questions as to what extent these systems may introduce or exacerbate disparities in care for historically underrepresented and mistreated groups, due to biases implicitly embedded in observational data in electronic health records. To address this problem in the context of clinical risk prediction models, we develop an augmented counterfactual fairness criteria to extend the group fairness criteria of equalized odds to an individual level. We do so by requiring that the same prediction be made for a patient, and a counterfactual patient resulting from changing a sensitive attribute, if the factual and counterfactual outcomes do not differ. We investigate the extent to which the augmented counterfactual fairness criteria may be applied to develop fair models for prolonged inpatient length of stay and mortality with observational electronic health records data. As the fairness criteria is ill-defined without knowledge of the data generating process, we use a variational autoencoder to perform counterfactual inference in the context of an assumed causal graph. While our technique provides a means to trade off maintenance of fairness with reduction in predictive performance in the context of a learned generative model, further work is needed to assess the generality of this approach.
Recommender systems are gaining increasing and critical impacts on human and society since a growing number of users use them for information seeking and decision making. Therefore, it is crucial to address the potential unfairness problems in recommendations. Just like users have personalized preferences on items, users demands for fairness are also personalized in many scenarios. Therefore, it is important to provide personalized fair recommendations for users to satisfy their personalized fairness demands. Besides, previous works on fair recommendation mainly focus on association-based fairness. However, it is important to advance from associative fairness notions to causal fairness notions for assessing fairness more properly in recommender systems. Based on the above considerations, this paper focuses on achieving personalized counterfactual fairness for users in recommender systems. To this end, we introduce a framework for achieving counterfactually fair recommendations through adversary learning by generating feature-independent user embeddings for recommendation. The framework allows recommender systems to achieve personalized fairness for users while also covering non-personalized situations. Experiments on two real-world datasets with shallow and deep recommendation algorithms show that our method can generate fairer recommendations for users with a desirable recommendation performance.
In this paper, we critically examine the effectiveness of the requirement to conduct a Data Protection Impact Assessment (DPIA) in Article 35 of the General Data Protection Regulation (GDPR) in light of fairness metrics. Through this analysis, we explore the role of the fairness principle as introduced in Article 5(1)(a) and its multifaceted interpretation in the obligation to conduct a DPIA. Our paper argues that although there is a significant theoretical role for the considerations of fairness in the DPIA process, an analysis of the various guidance documents issued by data protection authorities on the obligation to conduct a DPIA reveals that they rarely mention the fairness principle in practice.
The use of machine learning to guide clinical decision making has the potential to worsen existing health disparities. Several recent works frame the problem as that of algorithmic fairness, a framework that has attracted considerable attention and criticism. However, the appropriateness of this framework is unclear due to both ethical as well as technical considerations, the latter of which include trade-offs between measures of fairness and model performance that are not well-understood for predictive models of clinical outcomes. To inform the ongoing debate, we conduct an empirical study to characterize the impact of penalizing group fairness violations on an array of measures of model performance and group fairness. We repeat the analyses across multiple observational healthcare databases, clinical outcomes, and sensitive attributes. We find that procedures that penalize differences between the distributions of predictions across groups induce nearly-universal degradation of multiple performance metrics within groups. On examining the secondary impact of these procedures, we observe heterogeneity of the effect of these procedures on measures of fairness in calibration and ranking across experimental conditions. Beyond the reported trade-offs, we emphasize that analyses of algorithmic fairness in healthcare lack the contextual grounding and causal awareness necessary to reason about the mechanisms that lead to health disparities, as well as about the potential of algorithmic fairness methods to counteract those mechanisms. In light of these limitations, we encourage researchers building predictive models for clinical use to step outside the algorithmic fairness frame and engage critically with the broader sociotechnical context surrounding the use of machine learning in healthcare.