Do you want to publish a course? Click here

Reducing Sentiment Bias in Language Models via Counterfactual Evaluation

99   0   0.0 ( 0 )
 Added by Po-Sen Huang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Advances in language modeling architectures and the availability of large text corpora have driven progress in automatic text generation. While this results in models capable of generating coherent texts, it also prompts models to internalize social biases present in the training corpus. This paper aims to quantify and reduce a particular type of bias exhibited by language models: bias in the sentiment of generated text. Given a conditioning context (e.g., a writing prompt) and a language model, we analyze if (and how) the sentiment of the generated text is affected by changes in values of sensitive attributes (e.g., country names, occupations, genders) in the conditioning context using a form of counterfactual evaluation. We quantify sentiment bias by adopting individual and group fairness metrics from the fair machine learning literature, and demonstrate that large-scale models trained on two different corpora (news articles, and Wikipedia) exhibit considerable levels of bias. We then propose embedding and sentiment prediction-derived regularization on the language models latent representations. The regularizations improve fairness metrics while retaining comparable levels of perplexity and semantic similarity.



rate research

Read More

Many text corpora exhibit socially problematic biases, which can be propagated or amplified in the models trained on such data. For example, doctor cooccurs more frequently with male pronouns than female pronouns. In this study we (i) propose a metric to measure gender bias; (ii) measure bias in a text corpus and the text generated from a recurrent neural network language model trained on the text corpus; (iii) propose a regularization loss term for the language model that minimizes the projection of encoder-trained embeddings onto an embedding subspace that encodes gender; (iv) finally, evaluate efficacy of our proposed method on reducing gender bias. We find this regularization method to be effective in reducing gender bias up to an optimal weight assigned to the loss term, beyond which the model becomes unstable as the perplexity increases. We replicate this study on three training corpora---Penn Treebank, WikiText-2, and CNN/Daily Mail---resulting in similar conclusions.
Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all machine learning based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.
Algorithmic risk assessments are increasingly used to help humans make decisions in high-stakes settings, such as medicine, criminal justice and education. In each of these cases, the purpose of the risk assessment tool is to inform actions, such as medical treatments or release conditions, often with the aim of reducing the likelihood of an adverse event such as hospital readmission or recidivism. Problematically, most tools are trained and evaluated on historical data in which the outcomes observed depend on the historical decision-making policy. These tools thus reflect risk under the historical policy, rather than under the different decision options that the tool is intended to inform. Even when tools are constructed to predict risk under a specific decision, they are often improperly evaluated as predictors of the target outcome. Focusing on the evaluation task, in this paper we define counterfactual analogues of common predictive performance and algorithmic fairness metrics that we argue are better suited for the decision-making context. We introduce a new method for estimating the proposed metrics using doubly robust estimation. We provide theoretical results that show that only under strong conditions can fairness according to the standard metric and the counterfactual metric simultaneously hold. Consequently, fairness-promoting methods that target parity in a standard fairness metric may --- and as we show empirically, do --- induce greater imbalance in the counterfactual analogue. We provide empirical comparisons on both synthetic data and a real world child welfare dataset to demonstrate how the proposed method improves upon standard practice.
This paper treats gender bias latent in word embeddings. Previous mitigation attempts rely on the operationalisation of gender bias as a projection over a linear subspace. An alternative approach is Counterfactual Data Augmentation (CDA), in which a corpus is duplicated and augmented to remove bias, e.g. by swapping all inherently-gendered words in the copy. We perform an empirical comparison of these approaches on the English Gigaword and Wikipedia, and find that whilst both successfully reduce direct bias and perform well in tasks which quantify embedding quality, CDA variants outperform projection-based methods at the task of drawing non-biased gender analogies by an average of 19% across both corpora. We propose two improvements to CDA: Counterfactual Data Substitution (CDS), a variant of CDA in which potentially biased text is randomly substituted to avoid duplication, and the Names Intervention, a novel name-pairing technique that vastly increases the number of words being treated. CDA/S with the Names Intervention is the only approach which is able to mitigate indirect gender bias: following debiasing, previously biased words are significantly less clustered according to gender (cluster purity is reduced by 49%), thus improving on the state-of-the-art for bias mitigation.
We survey 146 papers analyzing bias in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing bias is an inherently normative process. We further find that these papers proposed quantitative techniques for measuring or mitigating bias are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing bias in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of bias---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا