Do you want to publish a course? Click here

Sub-microsecond entangling gate between trapped ions via Rydberg interaction

107   0   0.0 ( 0 )
 Added by Chi Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Generating quantum entanglement in large systems on time scales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems with low-error entanglement gates operated via the vibrational motion of a few-ion crystal within tens of microseconds. To exceed the level of complexity tractable by classical computers the main challenge is to realise fast entanglement operations in large ion crystals. The strong dipole-dipole interactions in polar molecule and Rydberg atom systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems. Here, we combine the benefits of these approaches: we report a $700,mathrm{ns}$ two-ion entangling gate which utilises the strong dipolar interaction between trapped Rydberg ions and produce a Bell state with $78%$ fidelity. The sources of gate error are identified and a total error below $0.2%$ is predicted for experimentally-achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes $sim 10^{-4}$ gate error in a large ion crystal of 100 ions. This provides a new avenue to significantly speed up and scale up trapped ion quantum computers and simulators.



rate research

Read More

We implement a two-qubit entangling M{o}lmer-S{o}rensen interaction by transporting two co-trapped $^{40}mathrm{Ca}^{+}$ ions through a stationary, bichromatic optical beam within a surface-electrode Paul trap. We describe a procedure for achieving a constant Doppler shift during the transport which uses fine temporal adjustment of the moving confinement potential. The fixed interaction duration of the ions transported through the laser beam as well as the dynamically changing ac Stark shift require alterations to the calibration procedures used for a stationary gate. We use the interaction to produce Bell states with fidelities commensurate to those of stationary gates performed in the same system. This result establishes the feasibility of actively incorporating ion transport into quantum information entangling operations.
We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Removal by Adiabatic Gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg blockade we generate Bell states with a fidelity of $F>0.9999$ in a 300 K environment for a gate time of only $50;{rm ns}$, which is an order of magnitude faster than previous protocols. These results establish the potential of neutral atom qubits with Rydberg blockade gates for scalable quantum computation.
We propose an optical scheme for generating entanglement between co-trapped identical or dissimilar alkaline earth atomic ions ($^{40}text{Ca}^+$, $^{88}text{Sr}^+$, $^{138}text{Ba}^+$, $^{226}text{Ra}^+$) which exhibits fundamental error rates below $10^{-4}$ and can be implemented with a broad range of laser wavelengths spanning from ultraviolet to infrared. We also discuss straightforward extensions of this technique to include the two lightest Group-2 ions ($text{Be}^+$, $text{Mg}^+$) for multispecies entanglement. The key elements of this wavelength-insensitive geometric phase gate are the use of a ground ($S_{1/2}$) and a metastable ($D_{5/2}$) electronic state as the qubit levels within a $sigma^z sigma^z$ light-shift entangling gate. We present a detailed analysis of the principles and fundamental error sources for this gate scheme which includes photon scattering and spontaneous emission decoherence, calculating two-qubit-gate error rates and durations at fixed laser beam intensity over a large portion of the optical spectrum (300 nm to 2 $mu text{m}$) for an assortment of ion pairs. We contrast the advantages and disadvantages of this technique against previous trapped-ion entangling gates and discuss its applications to quantum information processing and simulation with like and multispecies ion crystals.
To achieve scalable quantum computing, improving entangling-gate fidelity and its implementation-efficiency are of utmost importance. We present here a linear method to construct provably power-optimal entangling gates on an arbitrary pair of qubits on a trapped-ion quantum computer. This method leverages simultaneous modulation of amplitude, frequency, and phase of the beams that illuminate the ions and, unlike the state of the art, does not require any search in the parameter space. The linear method is extensible, enabling stabilization against external parameter fluctuations to an arbitrary order at a cost linear in the order. We implement and demonstrate the power-optimal, stabilized gate on a trapped-ion quantum computer.
Entangling gates in trapped-ion quantum computing have primarily targeted stationary ions with initial motional distributions that are thermal and close to the ground state. However, future systems will likely incur significant non-thermal excitation due to, e.g., ion transport, longer operational times, and increased spatial extent of the trap array. In this paper, we analyze the impact of such coherent motional excitation on entangling-gate error by performing simulations of Molmer-Sorenson (MS) gates on a pair of trapped-ion qubits with both thermal and coherent excitation present in a shared motional mode at the start of the gate. We discover that a small amount of coherent displacement dramatically erodes gate performance in the presence of experimental noise, and we demonstrate that applying only limited control over the phase of the displacement can suppress this error. We then use experimental data from transported ions to analyze the impact of coherent displacement on MS-gate error under realistic conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا