Do you want to publish a course? Click here

Fast and Robust Initialization for Visual-Inertial SLAM

81   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Visual-inertial SLAM (VI-SLAM) requires a good initial estimation of the initial velocity, orientation with respect to gravity and gyroscope and accelerometer biases. In this paper we build on the initialization method proposed by Martinelli and extended by Kaiser et al. , modifying it to be more general and efficient. We improve accuracy with several rounds of visual-inertial bundle adjustment, and robustify the method with novel observability and consensus tests, that discard erroneous solutions. Our results on the EuRoC dataset show that, while the original method produces scale errors up to 156%, our method is able to consistently initialize in less than two seconds with scale errors around 5%, which can be further reduced to less than 1% performing visual-inertial bundle adjustment after ten seconds.



rate research

Read More

We formulate for the first time visual-inertial initialization as an optimal estimation problem, in the sense of maximum-a-posteriori (MAP) estimation. This allows us to properly take into account IMU measurement uncertainty, which was neglected in previous methods that either solved sets of algebraic equations, or minimized ad-hoc cost functions using least squares. Our exhaustive initialization tests on EuRoC dataset show that our proposal largely outperforms the best methods in the literature, being able to initialize in less than 4 seconds in almost any point of the trajectory, with a scale error of 5.3% on average. This initialization has been integrated into ORB-SLAM Visual-Inertial boosting its robustness and efficiency while maintaining its excellent accuracy.
Monocular cameras coupled with inertial measurements generally give high performance visual inertial odometry. However, drift can be significant with long trajectories, especially when the environment is visually challenging. In this paper, we propose a system that leverages ultra-wideband ranging with one static anchor placed in the environment to correct the accumulated error whenever the anchor is visible. We also use this setup for collaborative SLAM: different robots use mutual ranging (when available) and the common anchor to estimate the transformation between each other, facilitating map fusion Our system consists of two modules: a double layer ranging, visual, and inertial odometry for single robots, and a transformation estimation module for collaborative SLAM. We test our system on public datasets by simulating an ultra-wideband sensor as well as on real robots. Experiments show our method can outperform state-of-the-art visual-inertial odometry by more than 20%. For visually challenging environments, our method works even the visual-inertial odometry has significant drift Furthermore, we can compute the collaborative SLAM transformation matrix at almost no extra computation cost.
The efficiency and accuracy of mapping are crucial in a large scene and long-term AR applications. Multi-agent cooperative SLAM is the precondition of multi-user AR interaction. The cooperation of multiple smart phones has the potential to improve efficiency and robustness of task completion and can complete tasks that a single agent cannot do. However, it depends on robust communication, efficient location detection, robust mapping, and efficient information sharing among agents. We propose a multi-intelligence collaborative monocular visual-inertial SLAM deployed on multiple ios mobile devices with a centralized architecture. Each agent can independently explore the environment, run a visual-inertial odometry module online, and then send all the measurement information to a central server with higher computing resources. The server manages all the information received, detects overlapping areas, merges and optimizes the map, and shares information with the agents when needed. We have verified the performance of the system in public datasets and real environments. The accuracy of mapping and fusion of the proposed system is comparable to VINS-Mono which requires higher computing resources.
This work proposes a novel SLAM framework for stereo and visual inertial odometry estimation. It builds an efficient and robust parametrization of co-planar points and lines which leverages specific geometric constraints to improve camera pose optimization in terms of both efficiency and accuracy. %reduce the size of the Hessian matrix in the optimization. The pipeline consists of extracting 2D points and lines, predicting planar regions and filtering the outliers via RANSAC. Our parametrization scheme then represents co-planar points and lines as their 2D image coordinates and parameters of planes. We demonstrate the effectiveness of the proposed method by comparing it to traditional parametrizations in a novel Monte-Carlo simulation set. Further, the whole stereo SLAM and VIO system is compared with state-of-the-art methods on the public real-world dataset EuRoC. Our method shows better results in terms of accuracy and efficiency than the state-of-the-art. The code is released at https://github.com/LiXin97/Co-Planar-Parametrization.
163 - Jinxu Liu , Wei Gao , Zhanyi Hu 2020
Odometer-aided visual-inertial SLAM systems typically have a good performance for navigation of wheeled platforms, while they usually suffer from degenerate cases before the first turning. In this paper, firstly we perform an observability analysis w.r.t. the extrinsic parameters before the first turning, which is a complement of the existing results of observability analyses. Secondly, inspired by the above observability analyses, we propose a bidirectional trajectory computation method, by which the poses before the first turning are refined in the backward computation thread, and the real-time trajectory is adjusted accordingly. Experimental results prove that our proposed method not only solves the problem of the unobservability of accelerometer bias and extrinsic parameters before the first turning, but also results in more accurate trajectories in comparison with the state-of-the-art approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا