Do you want to publish a course? Click here

Co-Planar Parametrization for Stereo-SLAM and Visual-Inertial Odometry

103   0   0.0 ( 0 )
 Added by Yanyan Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This work proposes a novel SLAM framework for stereo and visual inertial odometry estimation. It builds an efficient and robust parametrization of co-planar points and lines which leverages specific geometric constraints to improve camera pose optimization in terms of both efficiency and accuracy. %reduce the size of the Hessian matrix in the optimization. The pipeline consists of extracting 2D points and lines, predicting planar regions and filtering the outliers via RANSAC. Our parametrization scheme then represents co-planar points and lines as their 2D image coordinates and parameters of planes. We demonstrate the effectiveness of the proposed method by comparing it to traditional parametrizations in a novel Monte-Carlo simulation set. Further, the whole stereo SLAM and VIO system is compared with state-of-the-art methods on the public real-world dataset EuRoC. Our method shows better results in terms of accuracy and efficiency than the state-of-the-art. The code is released at https://github.com/LiXin97/Co-Planar-Parametrization.



rate research

Read More

Visual-inertial SLAM (VI-SLAM) requires a good initial estimation of the initial velocity, orientation with respect to gravity and gyroscope and accelerometer biases. In this paper we build on the initialization method proposed by Martinelli and extended by Kaiser et al. , modifying it to be more general and efficient. We improve accuracy with several rounds of visual-inertial bundle adjustment, and robustify the method with novel observability and consensus tests, that discard erroneous solutions. Our results on the EuRoC dataset show that, while the original method produces scale errors up to 156%, our method is able to consistently initialize in less than two seconds with scale errors around 5%, which can be further reduced to less than 1% performing visual-inertial bundle adjustment after ten seconds.
Monocular cameras coupled with inertial measurements generally give high performance visual inertial odometry. However, drift can be significant with long trajectories, especially when the environment is visually challenging. In this paper, we propose a system that leverages ultra-wideband ranging with one static anchor placed in the environment to correct the accumulated error whenever the anchor is visible. We also use this setup for collaborative SLAM: different robots use mutual ranging (when available) and the common anchor to estimate the transformation between each other, facilitating map fusion Our system consists of two modules: a double layer ranging, visual, and inertial odometry for single robots, and a transformation estimation module for collaborative SLAM. We test our system on public datasets by simulating an ultra-wideband sensor as well as on real robots. Experiments show our method can outperform state-of-the-art visual-inertial odometry by more than 20%. For visually challenging environments, our method works even the visual-inertial odometry has significant drift Furthermore, we can compute the collaborative SLAM transformation matrix at almost no extra computation cost.
The efficiency and accuracy of mapping are crucial in a large scene and long-term AR applications. Multi-agent cooperative SLAM is the precondition of multi-user AR interaction. The cooperation of multiple smart phones has the potential to improve efficiency and robustness of task completion and can complete tasks that a single agent cannot do. However, it depends on robust communication, efficient location detection, robust mapping, and efficient information sharing among agents. We propose a multi-intelligence collaborative monocular visual-inertial SLAM deployed on multiple ios mobile devices with a centralized architecture. Each agent can independently explore the environment, run a visual-inertial odometry module online, and then send all the measurement information to a central server with higher computing resources. The server manages all the information received, detects overlapping areas, merges and optimizes the map, and shares information with the agents when needed. We have verified the performance of the system in public datasets and real environments. The accuracy of mapping and fusion of the proposed system is comparable to VINS-Mono which requires higher computing resources.
163 - Jinxu Liu , Wei Gao , Zhanyi Hu 2020
Odometer-aided visual-inertial SLAM systems typically have a good performance for navigation of wheeled platforms, while they usually suffer from degenerate cases before the first turning. In this paper, firstly we perform an observability analysis w.r.t. the extrinsic parameters before the first turning, which is a complement of the existing results of observability analyses. Secondly, inspired by the above observability analyses, we propose a bidirectional trajectory computation method, by which the poses before the first turning are refined in the backward computation thread, and the real-time trajectory is adjusted accordingly. Experimental results prove that our proposed method not only solves the problem of the unobservability of accelerometer bias and extrinsic parameters before the first turning, but also results in more accurate trajectories in comparison with the state-of-the-art approaches.
Motion estimation by fusing data from at least a camera and an Inertial Measurement Unit (IMU) enables many applications in robotics. However, among the multitude of Visual Inertial Odometry (VIO) methods, few efficiently estimate device motion with consistent covariance, and calibrate sensor parameters online for handling data from consumer sensors. This paper addresses the gap with a Keyframe-based Structureless Filter (KSF). For efficiency, landmarks are not included in the filters state vector. For robustness, KSF associates feature observations and manages state variables using the concept of keyframes. For flexibility, KSF supports anytime calibration of IMU systematic errors, as well as extrinsic, intrinsic, and temporal parameters of each camera. Estimator consistency and observability of sensor parameters were analyzed by simulation. Sensitivity to design options, e.g., feature matching method and camera count was studied with the EuRoC benchmark. Sensor parameter estimation was evaluated on raw TUM VI sequences and smartphone data. Moreover, pose estimation accuracy was evaluated on EuRoC and TUM VI sequences versus recent VIO methods. These tests confirm that KSF reliably calibrates sensor parameters when the data contain adequate motion, and consistently estimate motion with accuracy rivaling recent VIO methods. Our implementation runs at 42 Hz with stereo camera images on a consumer laptop.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا