Do you want to publish a course? Click here

Secant varieties of toric varieties arising from simplicial complexes

81   0   0.0 ( 0 )
 Added by Piotr Zwiernik
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by the study of the secant variety of the Segre-Veronese variety we propose a general framework to analyze properties of the secant varieties of toric embeddings of affine spaces defined by simplicial complexes. We prove that every such secant is toric, which gives a way to use combinatorial tools to study singularities. We focus on the Segre-Veronese variety for which we completely classify their secants that give Gorenstein or $mathbb Q$-Gorenstein varieties. We conclude providing the explicit description of the singular locus.



rate research

Read More

236 - Edoardo Ballico 2021
Let $Xsubset mathbb{P}^r$ be an integral and non-degenerate variety. Let $sigma _{a,b}(X)subseteq mathbb{P}^r$, $(a,b)in mathbb{N}^2$, be the join of $a$ copies of $X$ and $b$ copies of the tangential variety of $X$. Using the classical Alexander-Hirschowitz theorem (case $b=0$) and a recent paper by H. Abo and N. Vannieuwenhoven (case $a=0$) we compute $dim sigma _{a,b}(X)$ in many cases when $X$ is the $d$-Veronese embedding of $mathbb{P}^n$. This is related to certain additive decompositions of homogeneous polynomials. We give a general theorem proving that $dim sigma _{0,b}(X)$ is the expected one when $X=Ytimes mathbb{P}^1$ has a suitable Segre-Veronese style embedding in $mathbb{P}^r$. As a corollary we prove that if $d_ige 3$, $1le i le n$, and $(d_1+1)(d_2+1)ge 38$ the tangential variety of $(mathbb{P}^1)^n$ embedded by $|mathcal{O} _{(mathbb{P} ^1)^n}(d_1,dots ,d_n)|$ is not defective and a similar statement for $mathbb{P}^ntimes mathbb{P}^1$. For an arbitrary $X$ and an ample line bundle $L$ on $X$ we prove the existence of an integer $k_0$ such that for all $tge k_0$ the tangential variety of $X$ with respect to $|L^{otimes t}|$ is not defective.
127 - Baohua Fu , Yewon Jeong , 2020
It is shown that an irreducible cubic hypersurface with nonzero Hessian and smooth singular locus is the secant variety of a Severi variety if and only if its Lie algebra of infinitesimal linear automorphisms admits a nonzero prolongation.
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mathbb{Q}}$ of $X$. The ramification over the invariant divisor and the singular invariant divisors of $X$ impose topological constraints on the automorphisms of $X_{mathbb{Q}}$. Considering this proalgebraic space as the toric functor on the adelic complex plane multiplicative semigroup, we calculate its automorphic group. Moreover we show that its vector bundle category is the direct limit of the respective categories of the finite toric varieties coverings defining the proalgebraic toric-completion.
We give a characterization of all complete smooth toric varieties whose rational homotopy is of elliptic type. All such toric varieties of complex dimension not more than three are explicitly described.
We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relationship between Tate resolutions and Beilinsons resolution of the diagonal. We also develop a Beilinson-type resolution of the diagonal for toric varieties and use it to generalize Eisenbud-Floystad-Schreyers computationally effective construction of Beilinson monads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا