Do you want to publish a course? Click here

Multichannel signal detection in interference and noise when signal mismatch happens

239   0   0.0 ( 0 )
 Added by Weijian Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we consider the problem of detecting a multichannel signal in interference and noise when signal mismatch happens. We first propose two selective detectors, since their strong selectivity is preferred in some situations. However, these two detectors would not be suitable candidates if a robust detector is needed. To overcome this shortcoming, we then devise a tunable detector, which is parametrized by a non-negative scaling factor, referred to as the tunable parameter. By adjusting the tunable parameter, the proposed detector can smoothly change its capability in rejecting or robustly detecting a mismatch signal. Moreover, one selective detector and the tunable detector with an appropriate tunable parameter can provide nearly the same detection performance as existing detectors in the absence of signal mismatch. We obtain analytical expressions for the probabilities of detection (PDs) and probabilities of false alarm (PFAs) of the three proposed detectors, which are verified by Monte Carlo simulations.



rate research

Read More

Multichannel adaptive signal detection jointly uses the test and training data to form an adaptive detector, and then make a decision on whether a target exists or not. Remarkably, the resulting adaptive detectors usually possess the constant false alarm rate (CFAR) properties, and hence no additional CFAR processing is needed. Filtering is not needed as a processing procedure either, since the function of filtering is embedded in the adaptive detector. Moreover, adaptive detection usually exhibits better detection performance than the filtering-then-CFAR detection technique. Multichannel adaptive signal detection has been more than 30 years since the first multichannel adaptive detector was proposed by Kelly in 1986. However, there are fewer overview articles on this topic. In this paper we give a tutorial overview of multichannel adaptive signal detection, with emphasis on Gaussian background. We present the main deign criteria for adaptive detectors, investigate the relationship between adaptive detection and filtering-then-CFAR detection, relationship between adaptive detectors and adaptive filters, summarize typical adaptive detectors, show numerical examples, give comprehensive literature review, and discuss some possible further research tracks.
The availability of inexpensive devices allows nowadays to implement cognitive radio functionalities in large-scale networks such as the internet-of-things and future mobile cellular systems. In this paper, we focus on wideband spectrum sensing in the presence of oversampling, i.e., the sampling frequency of a digital receiver is larger than the signal bandwidth, where signal detection must take into account the front-end impairments of low-cost devices. Based on the noise model of a software-defined radio dongle, we address the problem of robust signal detection in the presence of noise power uncertainty and non-flat noise power spectral density (PSD). In particular, we analyze the receiver operating characteristic of several detectors in the presence of such front-end impairments, to assess the performance attainable in a real-world scenario. We propose new frequency-domain detectors, some of which are proven to outperform previously proposed spectrum sensing techniques such as, e.g., eigenvalue-based tests. The study shows that the best performance is provided by a noise-uncertainty immune energy detector (ED) and, for the colored noise case, by tests that match the PSD of the receiver noise.
This paper focuses on the joint synthesis of constant envelope transmit signal and receive filter aimed at optimizing radar performance in signal-dependent interference and spectrally contested-congested environments. To ensure the desired Quality of Service (QoS) at each communication system, a precise control of the interference energy injected by the radar in each licensed/shared bandwidth is imposed. Besides, along with an upper bound to the maximum transmitted energy, constant envelope (with either arbitrary or discrete phases) and similarity constraints are forced to ensure compatibility with amplifiers operating in saturation regime and bestow relevant waveform features, respectively. To handle the resulting NP-hard design problems, new iterative procedures (with ensured convergence properties) are devised to account for continuous and discrete phase constraints, capitalizing on the Coordinate Descent (CD) framework. Two heuristic procedures are also proposed to perform valuable initializations. Numerical results are provided to assess the effectiveness of the conceived algorithms in comparison with the existing methods.
126 - Chunhui Guo , Zhan Zhang , Xin Xie 2017
The construction quality of the bolt is directly related to the safety of the project, and as such, it must be tested. In this paper, the improved complete ensemble empirical mode decomposition (ICEEMD) method is introduced to the bolt detection signal analysis. The ICEEMD is used in order to decompose the anchor detection signal according to the approximate entropy of each intrinsic mode function (IMF). The noise of the IMFs is eliminated by the wavelet soft threshold de-noising technique. Based on the approximate entropy, and the wavelet de-noising principle, the ICEEMD-De anchor signal analysis method is proposed. From the analysis of the vibration analog signal, as well as the bolt detection signal, the result shows that the ICEEMD-De method is capable of correctly separating the different IMFs under noisy conditions, and also that the IMF can effectively identify the reflection signal of the end of the bolt.
105 - Yang Qi , Ben Wu 2021
We design and experimentally demonstrate a radio frequency interference management system with free-space optical communication and photonic signal processing. The system provides real-time interference cancellation in 6 GHz wide bandwidth.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا