No Arabic abstract
In gravity theories that exhibit spontaneous scalarization, astrophysical objects are identical to their general relativistic counterpart until they reach a certain threshold in compactness or curvature. Beyond this threshold, they acquire a non-trivial scalar configuration, which also affects their structure. The onset of scalarization is controlled only by terms that contribute to linear perturbation around solutions of general relativity. The complete set of these terms has been identified for generalized scalar-tensor theories. Stepping on this result, we study the onset on scalarization in generalized scalar-tensor theories and determine the relevant thresholds in terms of the contributing coupling constants and the properties of the compact object.
Spontaneous scalarization is a mechanism that endows relativistic stars and black holes with a nontrivial configuration only when their spacetime curvature exceeds some threshold. The standard way to trigger spontaneous scalarization is via a tachyonic instability at the linear level, which is eventually quenched due to the effect of non-linear terms. In this paper, we identify all of the terms in the Horndeski action that contribute to the (effective) mass term in the linearized equations and, hence, can cause or contribute to the tachyonic instability that triggers scalarization.
In a subclass of scalar-tensor theories, it has been shown that standard general relativity solutions of neutron stars and black holes with trivial scalar field profiles are unstable. Such an instability leads to solutions which are different from those of general relativity and have non-trivial scalar field profiles, in a process called scalarization. In the present work we focus on scalarization due to a non-minimal coupling of the scalar field to the Gauss-Bonnet curvature invariant. The coupling acts as a tachyonic mass for the scalar mode, thus leading to the instability of general relativity solutions. We point out that a similar effect may occur for the scalar modes in a cosmological background, resulting in the instability of cosmological solutions. In particular, we show that a catastrophic instability develops during inflation within a period of time much shorter than the minimum required duration of inflation. As a result, the standard cosmological dynamics is not recovered. This raises the question of the viability of scalar-Gauss-Bonnet theories exhibiting scalarization.
We present spontaneous scalarization of charged black holes (BHs) which is induced by the coupling of the scalar field to the electromagnetic field strength and the double-dual Riemann tensor $L^{mu ualphabeta}F_{mu u}F_{alphabeta}$ in a scalar-vector-tensor theory. In our model, the scalarization can be realized under the curved background with a non-trivial electromagnetic field, such as Reissner-Nordstr$ddot{rm o}$m Black Holes (RN BHs). Firstly, we investigate the stability of the constant scalar field around RN BHs in the model, and show that the scalar field can suffer a tachyonic instability. Secondly, the bound state solution of the test scalar field around a RN BH and its stability are discussed. Finally, we construct scalarized BH solutions, and investigate their stability.
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
We discuss the Damour--Esposito-Far`ese model of gravity, which predicts the spontaneous scalarization of neutron stars in a certain range of parameter space. In the cosmological setup, the scalar field responsible for scalarization is subject to a tachyonic instability during inflation and the matter domination stage, resulting in a large value of the field today. This value feeds into the PPN parameters, which turn out to be in gross conflict with the Solar system measurements. We modify the original Damour--Esposito-Far`ese model by coupling the scalar to the inflaton field. This coupling acts as an effective mass for the scalar during inflation. For generic couplings that are not extremely small, the scalar (including its perturbations) relaxes to zero with an exponential accuracy by the beginning of the hot stage. While the scalar exhibits growth during the subsequent cosmological stages, the resulting present value remains very small---in a comfortable agreement with the Solar system tests.