Do you want to publish a course? Click here

Radio Spectroscopic Imaging of a Solar Flare Termination Shock: Split-Band Feature as Evidence for Shock Compression

68   0   0.0 ( 0 )
 Added by Bin Chen
 Publication date 2019
  fields Physics
and research's language is English
 Authors Bin Chen




Ask ChatGPT about the research

Solar flare termination shocks have been suggested as one of the promising drivers for particle acceleration in solar flares, yet observational evidence remains rare. By utilizing radio dynamic spectroscopic imaging of decimetric stochastic spike bursts in an eruptive flare, Chen et al. found that the bursts form a dynamic surface-like feature located at the ending points of fast plasma downflows above the looptop, interpreted as a flare termination shock. One piece of observational evidence that strongly supports the termination shock interpretation is the occasional split of the emission band into two finer lanes in frequency, similar to the split-band feature seen in fast-coronal-shock-driven type II radio bursts. Here we perform spatially, spectrally, and temporally resolved analysis of the split-band feature of the flare termination shock event. We find that the ensemble of the radio centroids from the two split-band lanes each outlines a nearly co-spatial surface. The high-frequency lane is located slightly below its low frequency counterpart by ~0.8 Mm, which strongly supports the shock upstream-downstream interpretation. Under this scenario, the density compression ratio across the shock front can be inferred from the frequency split, which implies a shock with a Mach number of up to 2.0. Further, the spatiotemporal evolution of the density compression along the shock front agrees favorably with results from magnetohydrodynamics simulations. We conclude that the detailed variations of the shock compression ratio may be due to the impact of dynamic plasma structures in the reconnection outflows, which results in distortion of the shock front.



rate research

Read More

66 - Bin Chen 2015
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.
64 - Yingjie Luo 2021
Solar flare termination shocks have been suggested as one of the viable mechanisms for accelerating electrons and ions to high energies. Observational evidence of such shocks, however, remains rare. Using radio dynamic spectroscopic imaging of a long-duration C1.9 flare obtained by the Karl G. Jansky Very Large Array (VLA), Chen et al. (2015) suggested that a type of coherent radio bursts, referred to as stochastic spike bursts, were radio signatures of nonthermal electrons interacting with myriad density fluctuations at the front of a flare termination shock. Here we report another stochastic spike burst event recorded during the extended energy release phase of a long-duration M8.4-class eruptive flare on 2012 March 10. VLA radio spectroscopic imaging of the spikes in 1.0--1.6 GHz shows that similar to the case of Chen et al. (2015), the burst centroids form an extended, ~10-long structure in the corona. By combining extreme-ultraviolet imaging observations of the flare from two vantage points with hard X-ray and ultraviolet observations of the flare ribbon brightenings, we reconstruct the flare arcade in three dimensions. The results show that the spike source is located at ~60 Mm above the flare arcade, where a diffuse supra-arcade fan and multitudes of plasma downflows are present. Although the flare arcade and ribbons seen during the impulsive phase do not allow us to clearly understand how the observed spike source location is connected to the flare geometry, the cooling flare arcade observed two hours later suggests that the spikes are located in the above-the-loop-top region, where a termination shock presumably forms.
89 - B. Gendre 2006
We analyze optical and X-ray observations of GRB 050904 obtained with TAROT and SWIFT. We perform temporal and spectral analysis of the X-ray and optical data. We find significant absorption in the early phase of the X-ray light curve, with some evidence (3 sigma level) of variability. We interpret this as a progressive photo-ionization. We investigate the environment of the burst and constrain its density profile. We find that the overall behavior of the afterglow is compatible with a fireball expanding in a wind environment during the first 2000 seconds after the burst (observer frame). On the other hand, the late (after 0.5 days, observer frame) afterglow is consistent with an interstellar medium, suggesting the possible presence of a termination shock. We estimate the termination shock position to be R_t ~ 1.8 x 10^{-2} pc, and the wind density parameter to be A_* ~ 1.8. We try to explain the simultaneous flares observed in optical and X-ray bands in light of different models : delayed external shock from a thick shell, inverse Compton emission from reverse shock, inverse Compton emission from late internal shocks or a very long internal shock activity. Among these models, those based on a single emission mechanism, are unable to account for the broad-band observations. Models invoking late internal shocks, with the inclusion of IC emission, or a properly tuned very long internal shock activity, offer possible explanations.
We study the solar eruptive event on 2017 September 10 that produced long-lasting $>$100 MeV $gamma$-ray emission and a ground level enhancement (GLE72). The origin of the high-energy ions producing late-phase gamma-ray emission (LPGRE) is still an open question, but a possible explanation is proton acceleration at coronal shocks produced by coronal mass ejections. We examine a common shock acceleration origin for both the LPGRE and GLE72. The $gamma$-ray emission observed by the Fermi-Large Area Telescope exhibits a weak impulsive phase, consistent with that observed in hard X-and $gamma$-ray line flare emissions, and what appear to be two distinct stages of LPGRE. From a detailed modeling of the shock wave, we derive the 3D distribution and temporal evolution of the shock parameters, and we examine the shock wave magnetic connection with the visible solar disk. The evolution of shock parameters on field lines returning to the visible disk, mirrors the two stages of LPGRE. We find good agreement between the time history of $>$100 MeV $gamma$-rays and one produced by a basic shock acceleration model. The time history of shock parameters magnetically mapped to Earth agrees with the rates observed by the Fort Smith neutron monitor during the first hour of the GLE72 if we include a 30% contribution of flare-accelerated protons during the first 10 minutes, having a release time following the time history of nuclear $gamma$-rays. Our analysis provides compelling evidence for a common shock origin for protons producing the LPGRE and most of the particles observed in GLE72.
70 - M. Lemoine 2016
Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron-positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. The present paper suggests that the corrugation of the termination shock, at the onset of non-linearity, may lead towards the desired phenomenology. Non-linear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا