Do you want to publish a course? Click here

Strong bulk photovoltaic effect in chiral crystal in the visible spectrum

129   0   0.0 ( 0 )
 Added by Yan Sun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structurally chiral materials hosting multifold fermions with large topological number have attracted considerable attention because of their naturally long surface Fermi arcs and bulk quantized circular photogalvanic effect (CPGE). Multifold fermions only appear in metallic states, and therefore, most studies so far have only focused on the semimetals in compounds with chiral crystal structures. In this work, we show that the structurally chiral topological trivial insulators are also exotic states, which is interesting from the application point of view, owing to their natural advantage to host a large bulk photovoltaic effect in the visible wavelength region. In the last decades, the shift current in the visible wavelength region was limited to be 10 uA/V2 . By scanning the insulators with chiral structure, we found a class of compounds with photoconductivity ranging from 20 to 80 uA/V2 , which is approximately one order of magnitude larger than that reported in other real materials. This work illustrates that the compounds with chiral structure can host both quantum CPGE and a strong shift current in the second order optical response. Moreover, this work offers a good platform for the study of the shift current and its future application by putting the focus on insulator with chiral lattices, so far overlooked in photovoltaic technologies.



rate research

Read More

The correlation between the shift current mechanism for the bulk photovoltaic effect (BPVE) and the structural and electronic properties of ferroelectric perovskite oxides is not well understood. Here, we study and engineer the shift current photovoltaic effect using a visible-light-absorbing ferroelectric Pb(Ni$_{x}$Ti$_{1-x}$)O$_{3-x}$ solid solution from first principles. We show that the covalent orbital character dicates the direction, magnitude, and onset energy of shift current in a predictable fashion. In particular, we find that the shift current response can be enhanced via electrostatic control in layered ferroelectrics, as bound charges face a stronger impetus to screen the electric field in a thicker material, delocalizing electron densities. This heterogeneous layered structure with alternative photocurrent generating and insulating layers is ideal for BPVE applications.
We calculate the bulk photovoltaic response of the ferroelectrics BaTiO$_3$ and PbTiO$_3$ from first principles by applying shift current theory to the electronic structure from density functional theory. The first principles results for BaTiO$_3$ reproduce eperimental photocurrent direction and magnitude as a function of light frequency, as well as the dependence of current on light polarization, demonstrating that shift current is the dominant mechanism of the bulk photovoltaic effect in BaTiO$_3$. Additionally, we analyze the relationship between response and material properties in detail. The photocurrent does not depend simply or strongly on the magnitude of material polarization, as has been previously assumed; instead, electronic states with delocalized, covalent bonding that is highly asymmetric along the current direction are required for strong shift current enhancements. The complexity of the response dependence on both external and material parameters suggests applications not only in solar energy conversion, but to photocatalysis and sensor and switch type devices as well.
85 - Haowei Xu , Hua Wang , Jian Zhou 2020
Spin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illumination. The only requirement for BPSV is inversion symmetry breaking, thus it applies to a broad range of materials and can be readily integrated with existing semiconductor technologies. The BSPV effect is a cousin of the bulk photovoltaic (BPV) effect, whereby a DC charge current is generated under light. Thanks to the different selection rules on spin and charge currents, a pure spin current can be realized if the system possesses mirror symmetry or inversion-mirror symmetry. The mechanism of BPSV and the role of the electronic relaxation time $tau$ are also elucidated. We apply our theory to several distinct material systems, including transition metal dichalcogenides, anti-ferromagnetic $rm MnBi_2Te_4$, and the surface of topological crystalline insulator cubic $rm SnTe$.
Ferroelectric photovoltaic materials are an alternative to semiconductor-based photovoltaics and offer the advantage of above bandgap photovoltage generation. However, there are few known compounds, and photovoltaic efficiencies remain low. Here, we report the discovery of a photovoltaic effect in undoped lead magnesium niobate-lead titanate crystal and a significant improvement in the photovoltaic response under suitable electric fields and temperatures. The photovoltaic effect is maximum near the electric-field-driven ferroelectric dipole reorientation, and increases threefold near the Curie temperature. Moreover, at ferroelectric saturation, the photovoltaic response exhibits clear remanent and transient effects. The transient-remanent combinations together with electric and thermal tuning possibilities indicate photoferroelectric crystals as emerging elements for photovoltaics and optoelectronics, relevant to all-optical information storage and beyond.
Following the recent discovery of a bulk photovoltaic effect in the Pb[(Mg1/3Nb2/3)0.68Ti0.32]O3 crystal, we report here more than one order of magnitude improvement of photovoltaicity as well as its poling dependence in the related composition of lead magnesium niobate-lead titanate noted Pb[(Mg1/3Nb2/3)0.7Ti0.30]O3. Photocurrent measurements versus light intensity reveal a fascinating hysteretic charge carriers dynamics clearly demonstrating charge generation, trapping and release processes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا