Do you want to publish a course? Click here

Helmholtz-Hodge decompositions in the nonlocal framework. Well-posedness analysis and applications

109   0   0.0 ( 0 )
 Added by Marta D'Elia
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Nonlocal operators that have appeared in a variety of physical models satisfy identities and enjoy a range of properties similar to their classical counterparts. In this paper we obtain Helmholtz-Hodge type decompositions for two-point vector fields in three components that have zero nonlocal curls, zero nonlocal divergence, and a third component which is (nonlocally) curl-free and divergence-free. The results obtained incorporate different nonlocal boundary conditions, thus being applicable in a variety of settings.



rate research

Read More

The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. These integrations play an important role to setting the subsequent fixed point argument. The existence of solutions for less regular data is discussed, and several examples and applications are presented.
We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic nonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to a class of fractional-order operators and present rigorous estimates for the solution of the corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our analysis to the anisotropic diffusion-advection equation and prove well-posedness for fractional orders s in [0.5,1). We also present an application of the advection-diffusion equation to anomalous transport of solutes.
In this paper we prove local well-posedness in Orlicz spaces for the biharmonic heat equation $partial_{t} u+ Delta^2 u=f(u),;t>0,;xinR^N,$ with $f(u)sim mbox{e}^{u^2}$ for large $u.$ Under smallness condition on the initial data and for exponential nonlinearity $f$ such that $f(u)sim u^m$ as $uto 0,$ $m$ integer and $N(m-1)/4geq 2$, we show that the solution is global. Moreover, we obtain a decay estimates for large time for the nonlinear biharmonic heat equation as well as for the nonlinear heat equation. Our results extend to the nonlinear polyharmonic heat equation.
In this paper, we discuss the well-posedness of the Cauchy problem associated with the third-order evolution equation in time $$ u_{ttt} +A u + eta A^{frac13} u_{tt} +eta A^{frac23} u_t=f(u) $$ where $eta>0$, $X$ is a separable Hilbert space, $A:D(A)subset Xto X$ is an unbounded sectorial operator with compact resolvent, and for some $lambda_0>0$ we have $mbox{Re}sigma(A)>lambda_0$ and $f:D(A^{frac13})subset Xto X$ is a nonlinear function with suitable conditions of growth and regularity.
This paper is concerned with the analysis of the quasi-static thermo-poroelastic model. This model is nonlinear and includes thermal effects compared to the classical quasi-static poroelastic model (also known as Biots model). It consists of a momentum balance equation, a mass balance equation, and an energy balance equation, fully coupled and nonlinear due to a convective transport term in the energy balance equation. The aim of this article is to investigate, in the context of mixed formulations, the existence and uniqueness of a weak solution to this model problem. The primary variables in these formulations are the fluid pressure, temperature and elastic displacement as well as the Darcy flux, heat flux and total stress. The well-posedness of a linearized formulation is addressed first through the use of a Galerkin method and suitable a priori estimates. This is used next to study the well-posedness of an iterative solution procedure for the full nonlinear problem. A convergence proof for this algorithm is then inferred by a contraction of successive difference functions of the iterates using suitable norms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا