Do you want to publish a course? Click here

Multi-View Broad Learning System for Primate Oculomotor Decision Decoding

155   0   0.0 ( 0 )
 Added by Dongrui Wu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Multi-view learning improves the learning performance by utilizing multi-view data: data collected from multiple sources, or feature sets extracted from the same data source. This approach is suitable for primate brain state decoding using cortical neural signals. This is because the complementary components of simultaneously recorded neural signals, local field potentials (LFPs) and action potentials (spikes), can be treated as two views. In this paper, we extended broad learning system (BLS), a recently proposed wide neural network architecture, from single-view learning to multi-view learning, and validated its performance in decoding monkeys oculomotor decision from medial frontal LFPs and spikes. We demonstrated that medial frontal LFPs and spikes in non-human primate do contain complementary information about the oculomotor decision, and that the proposed multi-view BLS is a more effective approach for decoding the oculomotor decision than several classical and state-of-the-art single-view and multi-view learning approaches.



rate research

Read More

Despite rapid advances in machine learning tools, the majority of neural decoding approaches still use traditional methods. Modern machine learning tools, which are versatile and easy to use, have the potential to significantly improve decoding performance. This tutorial describes how to effectively apply these algorithms for typical decoding problems. We provide descriptions, best practices, and code for applying common machine learning methods, including neural networks and gradient boosting. We also provide detailed comparisons of the performance of various methods at the task of decoding spiking activity in motor cortex, somatosensory cortex, and hippocampus. Modern methods, particularly neural networks and ensembles, significantly outperform traditional approaches, such as Wiener and Kalman filters. Improving the performance of neural decoding algorithms allows neuroscientists to better understand the information contained in a neural population and can help advance engineering applications such as brain machine interfaces.
Deep artificial neural networks have been proposed as a model of primate vision. However, these networks are vulnerable to adversarial attacks, whereby introducing minimal noise can fool networks into misclassifying images. Primate vision is thought to be robust to such adversarial images. We evaluated this assumption by designing adversarial images to fool primate vision. To do so, we first trained a model to predict responses of face-selective neurons in macaque inferior temporal cortex. Next, we modified images, such as human faces, to match their model-predicted neuronal responses to a target category, such as monkey faces. These adversarial images elicited neuronal responses similar to the target category. Remarkably, the same images fooled monkeys and humans at the behavioral level. These results challenge fundamental assumptions about the similarity between computer and primate vision and show that a model of neuronal activity can selectively direct primate visual behavior.
Starting from childhood, the human brain restructures and rewires throughout life. Characterizing such complex brain development requires effective analysis of longitudinal and multi-modal neuroimaging data. Here, we propose such an analysis approach named Longitudinal Correlation Analysis (LCA). LCA couples the data of two modalities by first reducing the input from each modality to a latent representation based on autoencoders. A self-supervised strategy then relates the two latent spaces by jointly disentangling two directions, one in each space, such that the longitudinal changes in latent representations along those directions are maximally correlated between modalities. We applied LCA to analyze the longitudinal T1-weighted and diffusion-weighted MRIs of 679 youths from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Unlike existing approaches that focus on either cross-sectional or single-modal modeling, LCA successfully unraveled coupled macrostructural and microstructural brain development from morphological and diffusivity features extracted from the data. A retesting of LCA on raw 3D image volumes of those subjects successfully replicated the findings from the feature-based analysis. Lastly, the developmental effects revealed by LCA were inline with the current understanding of maturational patterns of the adolescent brain.
This paper considers the problem of sensorimotor delays in the optimal control of (smooth) eye movements under uncertainty. Specifically, we consider delays in the visuo-oculomotor loop and their implications for active inference. Active inference uses a generalisation of Kalman filtering to provide Bayes optimal estimates of hidden states and action in generalized coordinates of motion. Representing hidden states in generalized coordinates provides a simple way of compensating for both sensory and oculomotor delays. The efficacy of this scheme is illustrated using neuronal simulations of pursuit initiation responses, with and without compensation. We then consider an extension of the gener-ative model to simulate smooth pursuit eye movements - in which the visuo-oculomotor system believes both the target and its centre of gaze are attracted to a (hidden) point moving in the visual field. Finally, the generative model is equipped with a hierarchical structure, so that it can recognise and remember unseen (occluded) trajectories and emit anticipatory responses. These simulations speak to a straightforward and neurobiologically plausible solution to the generic problem of integrating information from different sources with different temporal delays and the particular difficulties encountered when a system - like the oculomotor system - tries to control its environment with delayed signals.
Anatomical connectivity imposes strong constraints on brain function, but there is no general agreement about principles that govern its organization. Based on extensive quantitative data we tested the power of three models to predict connections of the primate cerebral cortex: architectonic similarity (structural model), spatial proximity (distance model) and thickness similarity (thickness model). Architectonic similarity showed the strongest and most consistent influence on connection features. This parameter was strongly associated with the presence or absence of inter-areal connections and when integrated with spatial distance, the model allowed predicting the existence of projections with very high accuracy. Moreover, architectonic similarity was strongly related to the laminar pattern of projections origins, and the absolute number of cortical connections of an area. By contrast, cortical thickness similarity and distance were not systematically related to connection features. These findings suggest that cortical architecture provides a general organizing principle for connections in the primate brain.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا