No Arabic abstract
This paper considers the problem of sensorimotor delays in the optimal control of (smooth) eye movements under uncertainty. Specifically, we consider delays in the visuo-oculomotor loop and their implications for active inference. Active inference uses a generalisation of Kalman filtering to provide Bayes optimal estimates of hidden states and action in generalized coordinates of motion. Representing hidden states in generalized coordinates provides a simple way of compensating for both sensory and oculomotor delays. The efficacy of this scheme is illustrated using neuronal simulations of pursuit initiation responses, with and without compensation. We then consider an extension of the gener-ative model to simulate smooth pursuit eye movements - in which the visuo-oculomotor system believes both the target and its centre of gaze are attracted to a (hidden) point moving in the visual field. Finally, the generative model is equipped with a hierarchical structure, so that it can recognise and remember unseen (occluded) trajectories and emit anticipatory responses. These simulations speak to a straightforward and neurobiologically plausible solution to the generic problem of integrating information from different sources with different temporal delays and the particular difficulties encountered when a system - like the oculomotor system - tries to control its environment with delayed signals.
Multi-view learning improves the learning performance by utilizing multi-view data: data collected from multiple sources, or feature sets extracted from the same data source. This approach is suitable for primate brain state decoding using cortical neural signals. This is because the complementary components of simultaneously recorded neural signals, local field potentials (LFPs) and action potentials (spikes), can be treated as two views. In this paper, we extended broad learning system (BLS), a recently proposed wide neural network architecture, from single-view learning to multi-view learning, and validated its performance in decoding monkeys oculomotor decision from medial frontal LFPs and spikes. We demonstrated that medial frontal LFPs and spikes in non-human primate do contain complementary information about the oculomotor decision, and that the proposed multi-view BLS is a more effective approach for decoding the oculomotor decision than several classical and state-of-the-art single-view and multi-view learning approaches.
Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolves the exploitation-exploration dilemma in relation to prior preferences, by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about what would happen if I did that to what would I believe about what would happen if I did that. The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states, as opposed to states per se. We illustrate the competence of this scheme, using numerical simulations of deep decision problems.
Cross-situational word learning is based on the notion that a learner can determine the referent of a word by finding something in common across many observed uses of that word. Here we propose an adaptive learning algorithm that contains a parameter that controls the strength of the reinforcement applied to associations between concurrent words and referents, and a parameter that regulates inference, which includes built-in biases, such as mutual exclusivity, and information of past learning events. By adjusting these parameters so that the model predictions agree with data from representative experiments on cross-situational word learning, we were able to explain the learning strategies adopted by the participants of those experiments in terms of a trade-off between reinforcement and inference. These strategies can vary wildly depending on the conditions of the experiments. For instance, for fast mapping experiments (i.e., the correct referent could, in principle, be inferred in a single observation) inference is prevalent, whereas for segregated contextual diversity experiments (i.e., the referents are separated in groups and are exhibited with members of their groups only) reinforcement is predominant. Other experiments are explained with more balanced doses of reinforcement and inference.
While theories postulating a dual cognitive system take hold, quantitative confirmations are still needed to understand and identify interactions between the two systems or conflict events. Eye movements are among the most direct markers of the individual attentive load and may serve as an important proxy of information. In this work we propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events between the two systems through the collection and processing of data related to eye movements. A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios. Moreover, we show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy and to investigate more in depth the gaze dynamics.
The roundworm C. elegans exhibits robust escape behavior in response to rapidly rising temperature. The behavior lasts for a few seconds, shows history dependence, involves both sensory and motor systems, and is too complicated to model mechanistically using currently available knowledge. Instead we model the process phenomenologically, and we use the Sir Isaac dynamical inference platform to infer the model in a fully automated fashion directly from experimental data. The inferred model requires incorporation of an unobserved dynamical variable, and is biologically interpretable. The model makes accurate predictions about the dynamics of the worm behavior, and it can be used to characterize the functional logic of the dynamical system underlying the escape response. This work illustrates the power of modern artificial intelligence to aid in discovery of accurate and interpretable models of complex natural systems.