Do you want to publish a course? Click here

Lazy Open Quantum Walks

86   0   0.0 ( 0 )
 Added by Garreth Kemp
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Open quantum walks (OQWs) describe a quantum walker on an underlying graph whose dynamics is purely driven by dissipation and decoherence. Mathematically, they are formulated as completely positive trace preserving (CPTP) maps on the space of density matrices for the walker on the graph. Any microscopically derived OQW must include the possibility of remaining on the same site on the graph when the map is applied. We extend the CPTP map to describe a lazy OQW. We derive a central limit theorem for lazy OQWs on a $d$-dimensional lattice, where the distribution converges to a Gaussian. We show that the properties of this Gaussian computed using conventional methods agree with the general formulas derived from our central limit theorem.



rate research

Read More

A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the quantum trajectory point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time- step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.
Open Quantum Walks (OQWs) are exclusively driven by dissipation and are formulated as completely positive trace preserving (CPTP) maps on underlying graphs. The microscopic derivation of discrete and continuous in time OQWs is presented. It is assumed that connected nodes are weakly interacting via a common bath. The resulting reduced master equation of the quantum walker on the lattice is in the generalised master equation form. The time discretisation of the generalised master equation leads to the OQWs formalism. The explicit form of the transition operators establishes a connection between dynamical properties of the OQWs and thermodynamical characteristics of the environment. The derivation is demonstrated for the examples of the OQW on a circle of nodes and on a finite chain of nodes. For both examples a transition between diffusive and ballistic quantum trajectories is observed and found to be related to the temperature of the bath.
A connection between the asymptotic behavior of the open quantum walk and the spectrum of a generalized quantum coins is studied. For the case of simultaneously diagonalizable transition operators an exact expression for probability distribution of the position of the walker for arbitrary number of steps is found. For a large number of steps the probability distribution consist of maximally two soliton-like solution and a certain number of Gaussian distributions. The number of different contributions to the final probability distribution is equal to the number of distinct absolute values in the spectrum of the transition operators. The presence of the zeros in spectrum is an indicator of the soliton-like solutions in the probability distribution.
Game-playing proofs constitute a powerful framework for non-quantum cryptographic security arguments, most notably applied in the context of indifferentiability. An essential ingredient in such proofs is lazy sampling of random primitives. We develop a quantum game-playing proof framework by generalizing two recently developed proof techniques. First, we describe how Zhandrys compressed quantum oracles~(Crypto19) can be used to do quantum lazy sampling of a class of non-uniform function distributions. Second, we observe how Unruhs one-way-to-hiding lemma~(Eurocrypt14) can also be applied to compressed oracles, providing a quantum counterpart to the fundamental lemma of game-playing. Subsequently, we use our game-playing framework to prove quantum indifferentiability of the sponge construction, assuming a random internal function.
Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time-symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time-asymmetry. Moreover, we show that time-asymmetry in circuits can be controlled using local gates only, and can simulate time-asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport, and imply that time-asymmetry represents an omnipresent yet poorly understood effect in quantum information science.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا