Do you want to publish a course? Click here

Open Quantum Random Walks

219   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the quantum trajectory point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time- step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.



rate research

Read More

Open quantum walks (OQWs) describe a quantum walker on an underlying graph whose dynamics is purely driven by dissipation and decoherence. Mathematically, they are formulated as completely positive trace preserving (CPTP) maps on the space of density matrices for the walker on the graph. Any microscopically derived OQW must include the possibility of remaining on the same site on the graph when the map is applied. We extend the CPTP map to describe a lazy OQW. We derive a central limit theorem for lazy OQWs on a $d$-dimensional lattice, where the distribution converges to a Gaussian. We show that the properties of this Gaussian computed using conventional methods agree with the general formulas derived from our central limit theorem.
Open Quantum Walks (OQWs) are exclusively driven by dissipation and are formulated as completely positive trace preserving (CPTP) maps on underlying graphs. The microscopic derivation of discrete and continuous in time OQWs is presented. It is assumed that connected nodes are weakly interacting via a common bath. The resulting reduced master equation of the quantum walker on the lattice is in the generalised master equation form. The time discretisation of the generalised master equation leads to the OQWs formalism. The explicit form of the transition operators establishes a connection between dynamical properties of the OQWs and thermodynamical characteristics of the environment. The derivation is demonstrated for the examples of the OQW on a circle of nodes and on a finite chain of nodes. For both examples a transition between diffusive and ballistic quantum trajectories is observed and found to be related to the temperature of the bath.
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled with lattices that contain static defects which reverse the walkers direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walkers as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices. Also, we observe that a quantum walker is extremely sensitive to our model of dephasing.
We consider the Grover walk on infinite trees from the view point of spectral analysis. From the previous works, infinite regular trees provide localization. In this paper, we give the complete characterization of the eigenspace of this Grover walk, which involves localization of its behavior and recovers the previous works. Our result suggests that the Grover walk on infinite trees may be regarded as a limit of the quantum walk induced by the isotropic random walk with the Dirichlet boundary condition at the $n$-th depth rather than one with the Neumann boundary condition.
It was recently pointed out that identifiability of quantum random walks and hidden Markov processes underlie the same principles. This analogy immediately raises questions on the existence of hidden states also in quantum random walks and their relationship with earlier debates on hidden states in quantum mechanics. The overarching insight was that not only hidden Markov processes, but also quantum random walks are finitary processes. Since finitary processes enjoy nice asymptotic properties, this also encourages to further investigate the asymptotic properties of quantum random walks. Here, answers to all these questions are given. Quantum random walks, hidden Markov processes and finitary processes are put into a unifying model context. In this context, quantum random walks are seen to not only enjoy nice ergodic properties in general, but also intuitive quantum-style asymptotic properties. It is also pointed out how hidden states arising from our framework relate to hidden states in earlier, prominent treatments on topics such as the EPR paradoxon or Bells inequalities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا